Instance-Aware Semantic Segmentation for Food Calorie Estimation using Mask R-CNN

Knowing the number of calorie content in the food we consume can help in maintaining body health. By fulfilling the basic calorie need well, it will produce many positive effects to the body, including controlling the ideal body weight and becoming an adequate source of energy for physical activity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) S. 416 - 421
Hauptverfasser: Yogaswara, Reza Dea, Yuniarno, Eko Mulyanto, Wibawa, Adhi Dharma
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2019
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Knowing the number of calorie content in the food we consume can help in maintaining body health. By fulfilling the basic calorie need well, it will produce many positive effects to the body, including controlling the ideal body weight and becoming an adequate source of energy for physical activity. Conversely, people who do not care about their calorie needs will face various health problems, including obesity and worsening degenerative diseases such as diabetes or high blood pressure. Calculating the actual number of calories digitally from food requires the parameters of area, volume, and mass of the food. Some previous studies in the field of computer vision have been carried out to get a constant number of calories based on food types and not based on actual food volume measurements. In this research, a system will be developed using a computer vision approach that can be used to calculate the number of food calories automatically based on the size of the food volume using the Deep Learning Mask Region-based Convolutional Neural Network (R-CNN) algorithm. The segmentation technique uses the instance-aware semantic segmentation approach, which is to identify each pixel from instance of objects for each object found in a food image. This work uses the concept of instance-aware data labeling or segmentation detection that distinguishes each instances in a similar class, where this model will be used to recognize each different food object instantaneously in one class so that the number of calories of each food object can be obtained precisely. The expected benefit of the results of this research is to help someone get information about the size of food calories according to the calorie needs of the body with the mean Average Precision (mAP) level obtained at 89.4% and the percentage accuracy in calories calculated at 97.48%.
AbstractList Knowing the number of calorie content in the food we consume can help in maintaining body health. By fulfilling the basic calorie need well, it will produce many positive effects to the body, including controlling the ideal body weight and becoming an adequate source of energy for physical activity. Conversely, people who do not care about their calorie needs will face various health problems, including obesity and worsening degenerative diseases such as diabetes or high blood pressure. Calculating the actual number of calories digitally from food requires the parameters of area, volume, and mass of the food. Some previous studies in the field of computer vision have been carried out to get a constant number of calories based on food types and not based on actual food volume measurements. In this research, a system will be developed using a computer vision approach that can be used to calculate the number of food calories automatically based on the size of the food volume using the Deep Learning Mask Region-based Convolutional Neural Network (R-CNN) algorithm. The segmentation technique uses the instance-aware semantic segmentation approach, which is to identify each pixel from instance of objects for each object found in a food image. This work uses the concept of instance-aware data labeling or segmentation detection that distinguishes each instances in a similar class, where this model will be used to recognize each different food object instantaneously in one class so that the number of calories of each food object can be obtained precisely. The expected benefit of the results of this research is to help someone get information about the size of food calories according to the calorie needs of the body with the mean Average Precision (mAP) level obtained at 89.4% and the percentage accuracy in calories calculated at 97.48%.
Author Yuniarno, Eko Mulyanto
Wibawa, Adhi Dharma
Yogaswara, Reza Dea
Author_xml – sequence: 1
  givenname: Reza Dea
  surname: Yogaswara
  fullname: Yogaswara, Reza Dea
  organization: Institut Teknologi Sepuluh Nopember,Dept. of Electrical Engineering,Surabaya,Indonesia
– sequence: 2
  givenname: Eko Mulyanto
  surname: Yuniarno
  fullname: Yuniarno, Eko Mulyanto
  organization: Institut Teknologi Sepuluh Nopember,Dept. of Computer Engineering,Surabaya,Indonesia
– sequence: 3
  givenname: Adhi Dharma
  surname: Wibawa
  fullname: Wibawa, Adhi Dharma
  organization: Institut Teknologi Sepuluh Nopember,Dept. of Computer Engineering,Surabaya,Indonesia
BookMark eNotj1FLwzAUhSPog5v-gr3kD3Tm3jZN8ljKpoU50c3nkaW3I7gm0kbEf-_G9nQOfPBxzoTdhhiIsRmIOYAwT82m2TbVHAWYuTa5AjQ3bAIKNeSqMOqevTdhTDY4yqpfOxDfUG9D8u5UDj2FZJOPgXdx4MsYW17bYxw88cWYfH9hP6MPB_5qxy_-kdXr9QO76-xxpMdrTtnncrGtX7LV23NTV6vMA-iUQQloHZSKtOqE0walavdKlFhq6VolhJDGCIWSjDQO94jyDCy4ggiLfMpmF68not33cNoz_O2uL_N_4aFK5g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISITIA.2019.8937129
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728137497
9781728137490
EndPage 421
ExternalDocumentID 8937129
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-1612ac167e87f0c89257db7062685cd70005990725e959c2b22585cda1c4ee243
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:18 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-1612ac167e87f0c89257db7062685cd70005990725e959c2b22585cda1c4ee243
PageCount 6
ParticipantIDs ieee_primary_8937129
PublicationCentury 2000
PublicationDate 2019-Aug.
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-Aug.
PublicationDecade 2010
PublicationTitle 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA)
PublicationTitleAbbrev ISITIA
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7019916
Snippet Knowing the number of calorie content in the food we consume can help in maintaining body health. By fulfilling the basic calorie need well, it will produce...
SourceID ieee
SourceType Publisher
StartPage 416
SubjectTerms Computational modeling
Computer vision
Convolutional neural networks
Deep Learning
Food Calories
Image segmentation
Instance Segmentation
Mask R-CNN
Semantics
Seminars
Volume measurement
Title Instance-Aware Semantic Segmentation for Food Calorie Estimation using Mask R-CNN
URI https://ieeexplore.ieee.org/document/8937129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGjsdlnNsdSWlzQpdoKvZU8pqVId0sf-vdNdpeK4MVbSAKBCcM3k3zfDMA9VygMw4jKBJFaPEaaBBhSbVSo574JuFcKhZ95liXTqRg14OGghUHEknyGj25Y_uWbQu_dU1nXYavFpyY0OeeVVqsuJOQx0U3H6STtObaWvf5q56-WKSViDE_-d9YpdH6kd2R0AJUzaGDehte0DOI00t6X3CAZ48oaZKntYLGqxUM5seEnGRaFIX3paHVIBtZ9K2UicfT2BXmR2w_yRvtZ1oH34WDSf6J1LwS6tCnAjtrAzJfaizkmfM50IqyrGcWZzUeSSBteFVph3I9QREL7yvqpW5CeDhH9MDiHVl7keAEkkCwyvoi92LCQR55iMlCxspmMmceamUtoO3PM1lW5i1ltiau_p6_h2Fm84sTdQGu32eMtHOnP3XK7uSvv6BsxUZQl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_BobDb7yO6xlJYutku1FXor2WQqRborfejfN9ldKoIXbyEJBCYZvpnk-yYA9yLFSDP0qQwRqcFjpKGLHlU69dSca1c4hVB4IJIknE6jUQ0edloYRCzIZ_hom8Vbvs7V1l6VtSy2Gnzag33f87hTqrWqUkIOi1rxOJ7EbcvXMgegnPvr05QCM3rH_1vtBJo_4jsy2sHKKdQwa8BzXIRxCmn7S66QjHFpTLJQpvG2rORDGTEBKOnluSYdaYl1SLrGgUttIrEE9zcylOt38kI7SdKE11530unT6jcEujBJwIaa0IxL5QQCQzFnKoyMs-lUMJORhL7Soiy1wgT3MfIjxVPjqXZAOspD5J57BvUsz_AciCuZr3kUOIFmnvCdlEk3DVKTy-h5oJi-gIY1x-yjLHgxqyxx-Xf3HRz2J8PBbBAnT1dwZK1fMuSuob5ZbfEGDtTnZrFe3Rb79Q0Xl5ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Seminar+on+Intelligent+Technology+and+Its+Applications+%28ISITIA%29&rft.atitle=Instance-Aware+Semantic+Segmentation+for+Food+Calorie+Estimation+using+Mask+R-CNN&rft.au=Yogaswara%2C+Reza+Dea&rft.au=Yuniarno%2C+Eko+Mulyanto&rft.au=Wibawa%2C+Adhi+Dharma&rft.date=2019-08-01&rft.pub=IEEE&rft.spage=416&rft.epage=421&rft_id=info:doi/10.1109%2FISITIA.2019.8937129&rft.externalDocID=8937129