An Effective Quantum Inspired Genetic Algorithm for Continuous Multiobjective Optimization
Multiobjective Optimization Problems (MOP) can be found in many issues of scientific research, engineering, and in everyday social life. A MOP problem has several objectives that conflict with one another which must be optimized simultaneously. This paper presents a quantum-inspired evolutionary alg...
Uloženo v:
| Vydáno v: | 2019 5th International Conference on Science in Information Technology (ICSITech) s. 161 - 166 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2019
|
| Témata: | |
| ISBN: | 9781728123783, 172812378X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multiobjective Optimization Problems (MOP) can be found in many issues of scientific research, engineering, and in everyday social life. A MOP problem has several objectives that conflict with one another which must be optimized simultaneously. This paper presents a quantum-inspired evolutionary algorithm (QEA) to solve continuous multiobjective optimization problem (MOP). The proposed method employs Fast Nondominated Sorting and Crowding Distance from NSGA-II and implements all common operators of genetic algorithms (GA), such as crossover and mutations with additional Quantum Gate quantum operators. The proposed method is then run in a distributed manner and is proven to be able to significantly outperform the hypervolume and MOEA/D metrics and have hypervolumes that are comparable to NSGA-II while maintaining a better average Δ' in all testing problems. From this result, it is concluded that using quantum-inspired individual genetic algorithms to solve continuous MOP can produce hypervolume and Δ' metrics that are good in all specified test problems. |
|---|---|
| ISBN: | 9781728123783 172812378X |
| DOI: | 10.1109/ICSITech46713.2019.8987578 |

