Mixed-Precision Algorithm for Finding Selected Eigenvalues and Eigenvectors of Symmetric and Hermitian Matrices1
The multi-precision methods commonly follow approximate-iterate scheme by first obtaining the approximate solution from a low-precision factorization and solve. Then, they iteratively refine the solution to the desired accuracy that is often as high as what is possible with traditional approaches. W...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE/ACM Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems (ScalAH) S. 43 - 50 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
IEEE
01.11.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The multi-precision methods commonly follow approximate-iterate scheme by first obtaining the approximate solution from a low-precision factorization and solve. Then, they iteratively refine the solution to the desired accuracy that is often as high as what is possible with traditional approaches. While targeting symmetric and Hermitian eigenvalue problems of the form Ax = λx, we revisit the SICE algorithm proposed by Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6× speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested. 1 |
|---|---|
| AbstractList | The multi-precision methods commonly follow approximate-iterate scheme by first obtaining the approximate solution from a low-precision factorization and solve. Then, they iteratively refine the solution to the desired accuracy that is often as high as what is possible with traditional approaches. While targeting symmetric and Hermitian eigenvalue problems of the form Ax = λx, we revisit the SICE algorithm proposed by Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6× speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested. 1 |
| Author | Luszczek, Piotr Dongarra, Jack Tsai, Yaohung M. |
| Author_xml | – sequence: 1 givenname: Yaohung M. surname: Tsai fullname: Tsai, Yaohung M. email: ytsai2@icl.utk.edu organization: University of Tennessee,Innovative Computing Laboratory,Knoxville,TN,USA – sequence: 2 givenname: Piotr surname: Luszczek fullname: Luszczek, Piotr email: luszczek@icl.utk.edu organization: University of Tennessee,Innovative Computing Laboratory,Knoxville,TN,USA – sequence: 3 givenname: Jack surname: Dongarra fullname: Dongarra, Jack email: dongarra@icl.utk.edu organization: University of Tennessee,Innovative Computing Laboratory,Knoxville,TN,USA |
| BookMark | eNo1jF9rwjAUxTPYHqbbNxgjX6DuJk1i-yiiU1A20He5TW_chTaVtBvz28_9ezmH8_vBGYnr2EUS4lHBRCkon3Yem9nKOqf1RMMlAECpKzFSzlkztVNwt-K05U-qs9dEnnvuopw1xy7x8NbK0CW55FhzPModNeQHquWCjxQ_sHmnXmL83xfXpV52Qe7ObUtDYv9jV5RaHhij3OI3pF7diZuATU_3fz0W--ViP19lm5fn9Xy2yVgpazKDUyiCLm1VGqjQO4KgC5WTtyYn53MfdEDjCvAlFsEUpvRgKoUaC6SQj8XD7y0T0eGUuMV0PigAbawr8y8zkVkq |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ScalAH56622.2022.00011 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665475706 9781665475709 |
| EndPage | 50 |
| ExternalDocumentID | 10024569 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i1154-4a708f295b940bac6e0f2813ec543e6c3cf2fa4680c9a8f4849c04b1a2a8aef3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:13:30 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1154-4a708f295b940bac6e0f2813ec543e6c3cf2fa4680c9a8f4849c04b1a2a8aef3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10024569 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems (ScalAH) |
| PublicationTitleAbbrev | SCALAH |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8117849 |
| Snippet | The multi-precision methods commonly follow approximate-iterate scheme by first obtaining the approximate solution from a low-precision factorization and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 43 |
| SubjectTerms | eigenvalue solver Eigenvalues and eigenfunctions hardware accelerators Linear algebra mixed-precision algorithms Parallel processing Runtime Software algorithms Software libraries Symmetric matrices |
| Title | Mixed-Precision Algorithm for Finding Selected Eigenvalues and Eigenvectors of Symmetric and Hermitian Matrices1 |
| URI | https://ieeexplore.ieee.org/document/10024569 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8MgGMaJWzx4UuOM3-HgtQ4oo3BczJYd3LJki9ltofCiTVy7rJvR_95CO_XiwVspBwJvCC8fv-dB6N4RR6sqFgnl4oiDVZG2HuMS2hkSs1gEnYLnp2QykYuFmjawemBhACA8PoMH_xnu8m1hdv6orEvDRaFQLdRKElHDWg31S4nqzqpe9UdVfsI8YcWCEqd3BvplmxJWjeHxP9s7QZ0f_g5Pv1eWU3QA-Rlaj7MPsNF007ji4P7bS1Ft7V9XuEo88TALfAqeBWMbsHjgdTa9ljeUWOf7cjikL3Hh8OxztfJ2WibUjvyjGD_b8TiI9kNJO2g-HMwfR1HjlxBlXlQn4joh0jHVSxUnqTYCiGOSxmB6PAZhYuOY01xIYpSWjkuuDOEp1UxLDS4-R-28yOECYZpKn9qB0anklloptDWMmyqMRpjEXaKOH63lulbEWO4H6uqP_9foyAekZvhuUHu72cEtOjTv26zc3IU4fgGQ6aMu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMYbRRM9qRHjtz14nbZdKe2RGMiMQEgghhvp2rdKIhthYPS_dy1DvXjwtq6Hpn3T9O3H73kQunXE0bKKRUK5OOJgVaStx7iEdobELBZBp-C52-z35XisBhWsHlgYAAiPz-DOf4a7fJublT8qu6fholCobbTT4JyRNa5Vcb-UqPth2a9WUmYozDNWLGhxem-gX8YpYd3oHPyzxUNU_yHw8OB7bTlCW5Ado3lv-gE2GiwqXxzcenvJy8396wyXqSfuTAOhgofB2gYsbnulTa_mDQXW2aYcjukLnDs8_JzNvKGWCbWJfxbj5zvuBdl-KGgdjTrt0UMSVY4J0dTL6kRcN4l0TDVSxUmqjQDimKQxmAaPQZjYOOY0F5IYpaXjkitDeEo101KDi09QLcszOEWYptInd2B0KrmlVgptDeOmDKQRpunOUN2P1mS-1sSYbAbq_I__N2gvGfW6k-5j_-kC7fvgrIm-S1RbLlZwhXbN-3JaLK5DTL8AOGamdQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+Workshop+on+Latest+Advances+in+Scalable+Algorithms+for+Large-Scale+Heterogeneous+Systems+%28ScalAH%29&rft.atitle=Mixed-Precision+Algorithm+for+Finding+Selected+Eigenvalues+and+Eigenvectors+of+Symmetric+and+Hermitian+Matrices1&rft.au=Tsai%2C+Yaohung+M.&rft.au=Luszczek%2C+Piotr&rft.au=Dongarra%2C+Jack&rft.date=2022-11-01&rft.pub=IEEE&rft.spage=43&rft.epage=50&rft_id=info:doi/10.1109%2FScalAH56622.2022.00011&rft.externalDocID=10024569 |