A linear time algorithm for minimum augmentation to 3-connect specified vertices of a graph
The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph...
Uloženo v:
| Vydáno v: | 1997 IEEE International Symposium on Circuits and Systems Ročník 2; s. 1013 - 1016 vol.2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
22.11.2002
|
| Témata: | |
| ISBN: | 9780780335837, 078033583X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph may have the property that, even after deleting any two vertices from it, there is a path between any pair of remaining vertices in S. The result of the paper is that 3VCA-SV can be solved optimally in linear time. |
|---|---|
| ISBN: | 9780780335837 078033583X |
| DOI: | 10.1109/ISCAS.1997.621905 |

