A linear time algorithm for minimum augmentation to 3-connect specified vertices of a graph

The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:1997 IEEE International Symposium on Circuits and Systems Ročník 2; s. 1013 - 1016 vol.2
Hlavní autoři: Mashima, T., Watanabe, T.
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 22.11.2002
Témata:
ISBN:9780780335837, 078033583X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph may have the property that, even after deleting any two vertices from it, there is a path between any pair of remaining vertices in S. The result of the paper is that 3VCA-SV can be solved optimally in linear time.
ISBN:9780780335837
078033583X
DOI:10.1109/ISCAS.1997.621905