A linear time algorithm for minimum augmentation to 3-connect specified vertices of a graph
The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph...
Uložené v:
| Vydané v: | 1997 IEEE International Symposium on Circuits and Systems Ročník 2; s. 1013 - 1016 vol.2 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
IEEE
22.11.2002
|
| Predmet: | |
| ISBN: | 9780780335837, 078033583X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The subject of the paper is the 3-vertex-connectivity augmentation problem for a specified set of vertices (3VCA-SV), which is defined as follows: given an undirected graph G=(V, E) and a specified subset S of V with |S|>3, find a smallest set of edges to be added to G so that the resulting graph may have the property that, even after deleting any two vertices from it, there is a path between any pair of remaining vertices in S. The result of the paper is that 3VCA-SV can be solved optimally in linear time. |
|---|---|
| ISBN: | 9780780335837 078033583X |
| DOI: | 10.1109/ISCAS.1997.621905 |

