Variational Iteration Method

The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as partial differential equations. The main advantage of the method lies in its flexibility and ability to solve nonlinear equations easily....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 141 - 147
Hlavní autori: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Médium: Kapitola
Jazyk:English
Vydavateľské údaje: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Vydanie:1
Predmet:
ISBN:9781119423423, 1119423422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as partial differential equations. The main advantage of the method lies in its flexibility and ability to solve nonlinear equations easily. The method can be used in bounded and unbounded domains as well. By this method one can find the convergent successive approximations of the exact solution of the differential equations if such a solution exists. Wazwaz used the VIM for solving the linear and nonlinear Volterra integral and integro‐differential equations and explained clearly how to use this method for solving homogenous and inhomogeneous partial differential equations. This chapter solves few test problems using the present method to make the readers familiar with the method. As such, two linear nonhomogeneous partial differential equations are handled in two examples, and a nonlinear partial differential equation has been solved in other example.
AbstractList The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as partial differential equations. The main advantage of the method lies in its flexibility and ability to solve nonlinear equations easily. The method can be used in bounded and unbounded domains as well. By this method one can find the convergent successive approximations of the exact solution of the differential equations if such a solution exists. Wazwaz used the VIM for solving the linear and nonlinear Volterra integral and integro‐differential equations and explained clearly how to use this method for solving homogenous and inhomogeneous partial differential equations. This chapter solves few test problems using the present method to make the readers familiar with the method. As such, two linear nonhomogeneous partial differential equations are handled in two examples, and a nonlinear partial differential equation has been solved in other example.
The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as partial differential equations. The main advantage of the method lies in its flexibility and ability to solve nonlinear equations easily. The method can be used in bounded and unbounded domains as well. By this method one can find the convergent successive approximations of the exact solution of the differential equations if such a solution exists. Wazwaz used the VIM for solving the linear and nonlinear Volterra integral and integro‐differential equations and explained clearly how to use this method for solving homogenous and inhomogeneous partial differential equations. This chapter solves few test problems using the present method to make the readers familiar with the method. As such, two linear nonhomogeneous partial differential equations are handled in two examples, and a nonlinear partial differential equation has been solved in other example.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  givenname: Snehashish
  surname: Chakraverty
  fullname: Chakraverty, Snehashish
– sequence: 2
  givenname: Nisha
  surname: Mahato
  fullname: Mahato, Nisha
– sequence: 3
  givenname: Perumandla
  surname: Karunakar
  fullname: Karunakar, Perumandla
– sequence: 4
  givenname: Tharasi
  surname: Dilleswar Rao
  fullname: Dilleswar Rao, Tharasi
BookMark eNpVj8lOwzAQQI1YBC35ABCH_kDLjO3E9hFVLJWKuFRcrYk9VSKipCRBiL8nbTjQy2yaN6M3EWd1U7MQtwgLBJD3zlhEdFoqneEiFKhORPJvqOD0qJfqQkwQHBhpwahLkXRdmYMyYF1q3JW4e6e2pL5saqpmq57bQz175b5o4rU431LVcfKXp2Lz9LhZvszXb8-r5cN6XuJwdK6NlCGXEZEdB7RbFVzM2OVENs0ZAgwbwGgoRiYyknWIzkUikEhaTYUaz36XFf94zpvmo_MIfq_sj5T9XvkQBkqP1K5tPr-460cwcN23VIWCdoNN51OjUUrtEaXH1A3YzYiVzOzHVzazTqFVv5WXYp8
ContentType Book Chapter
Copyright 2019 Wiley
2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley
– notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch13
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781119423430
9781119423447
9781119423461
1119423449
1119423430
1119423465
Edition 1
EndPage 147
ExternalDocumentID 10.1002/9781119423461.ch13
EBC5741224_112_159
8689318
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABQPQ
ADUVA
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
GEOUK
GQOVZ
IETMW
IPJKO
IVUIE
JFSCD
KKBTI
LMJTD
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
YPLAZ
ZEEST
ABAZT
ABBFG
ACGYG
ACLGV
ACNUM
AENVZ
AHWGJ
FFUUA
WIIVT
ID FETCH-LOGICAL-i1073-4722cb2d11e9ec18f3c9d6e9baa85be0c04720e17addeaa72e4cd99daa021a43
ISBN 9781119423423
1119423422
IngestDate Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:01 EDT 2025
Fri Nov 11 10:38:51 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Nonhomogeneous media
Nonlinear equations
Integral equations
Nonlinear systems
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i1073-4722cb2d11e9ec18f3c9d6e9baa85be0c04720e17addeaa72e4cd99daa021a43
OCLC 1090728073
PQID EBC5741224_112_159
PageCount 7
ParticipantIDs ieee_books_8689318
wiley_ebooks_10_1002_9781119423461_ch13_ch13
proquest_ebookcentralchapters_5741224_112_159
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References He (c13-cit-0001) 1998; 167
Wazwaz (c13-cit-0003) 2010; 87
Wazwaz (c13-cit-0004) 2010
He (c13-cit-0005) 2000; 114
He, Wu (c13-cit-0002) 2007; 54
References_xml – volume: 54
  start-page: 881
  issue: 7/8
  year: 2007
  end-page: 894
  ident: c13-cit-0002
  article-title: Variational iteration method: new development and applications
  publication-title: Computers and Mathematics with Applications
– volume: 87
  start-page: 1131
  issue: 5
  year: 2010
  end-page: 1141
  ident: c13-cit-0003
  article-title: The variational iteration method for solving linear and nonlinear Volterra integral and integro‐differential equations
  publication-title: International Journal of Computer Mathematics
– volume: 167
  start-page: 57
  issue: 1–2
  year: 1998
  end-page: 68
  ident: c13-cit-0001
  article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 114
  start-page: 115
  issue: 2
  year: 2000
  end-page: 123
  ident: c13-cit-0005
  article-title: Variational iteration method for autonomous ordinary differential systems
  publication-title: Applied Mathematics and Computation
– year: 2010
  ident: c13-cit-0004
  article-title: Partial Differential Equations and Solitary Waves Theory
SSID ssib037089579
ssj0002152863
ssib035724529
ssib043664869
ssib050313482
Score 1.5612767
Snippet The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as...
The variational iteration method (VIM) is one of the well‐known semi‐analytical methods for solving linear and nonlinear ordinary as well as partial...
SourceID wiley
proquest
ieee
SourceType Publisher
StartPage 141
SubjectTerms linear nonhomogeneous partial differential equations
nonlinear nonhomogeneous partial differential equation
semi‐analytical methods
variational iteration method
Title Variational Iteration Method
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689318
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=159&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6wQPwsvFDK2xTH9gTGBonjeNXtg7QtDJBQXuLHNtRKka2Je22v2Z_K3e2myYbL3vgxaoiK7J918vd-e77CHkb6ChWnOWUySCjUWYYlVxJGmcqYkOea6WVJZvgk0lyeipOer3bZS_M1Rkvy-TmRlz8V1HDMxA2ts4-QNzNS-EB_Aahwwhih_GOR9zNvbqa4-WV_mThrmIcEsAP82dGLf6IS10fW95oC8UARs9RpMwxdz6-XLRSeOjgYq9gfS2rd9_luasokpWsZ6tMdiEtExPoVF00Nv5IVotS_nbV2yemwqsCfbaqCrLFBEgF7UrNSlMgqVNdtDX4F4Txy1TlVwv-jKrqlt5OVmB_VCdZ8Y9qIG8KPWxz09Dl4lswxAL8vci1JN-z9g49tjUvDj6owvW2dqG1Aw873oXWHn_aH4FHBV4MBEIshUl74eHFJUVOMry73wsPnH6skTXOwYo--jz-9vOoyeEhJ3ASh5aAyi-UeRixZuG-UQsmf7y_UE_p04lu2jGSdXKmG-QZNr4MsCMFlr9JeqZ8Tp4eN7i-9Quy3ZLJoJHJwMnkJZkejqf7X6jn16AzCPpDijihKmM6CIwwKkjyUAkdG5FJmYwyM1SIJDo0AcdvoJScmUhpIbSUsHMZha_Ienlemi0y0CZO8lHII8Phi6BDkcWwzaGQo5xFYZL1ySbuM8X_RZ0mMTjJQdIndLnr1FYG-HJk5bZZp3dk0yfv7dG4yXXqALdZ2jnWFI_VDq8f-Po35MlKY7fJ-rxamB3yWF3NZ3W160X_Fxvbf7A
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Dilleswar+Rao%2C+Tharasi&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Chakraverty%2C+Snehashish&rft.atitle=Variational+Iteration+Method&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch13&rft.externalDBID=159&rft.externalDocID=EBC5741224_112_159
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg