Homotopy Perturbation Method
Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The method may also be used to solve a system of coupled linear and nonlinear differential equations. This chapter first illustrates the basic...
Uložené v:
| Vydané v: | Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 131 - 139 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Kapitola |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley
2019
John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Vydanie: | 1 |
| Predmet: | |
| ISBN: | 9781119423423, 1119423422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The method may also be used to solve a system of coupled linear and nonlinear differential equations. This chapter first illustrates the basic idea of the HPM. It uses the present method to solve a nonlinear ordinary differential equation, a nonlinear partial differential equation, and a coupled nonlinear system of partial differential equations. It is worth mentioning that the HPM can also be used for handling linear ordinary and partial differential equations. The test problems demonstrated in the chapter confirm that the HPM is an efficient method for solving linear/nonlinear ordinary, partial, and coupled differential equations. The series usually converges with an increase in the number of terms, but one may not expect the compact form solution always. |
|---|---|
| AbstractList | Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The method may also be used to solve a system of coupled linear and nonlinear differential equations. This chapter first illustrates the basic idea of the HPM. It uses the present method to solve a nonlinear ordinary differential equation, a nonlinear partial differential equation, and a coupled nonlinear system of partial differential equations. It is worth mentioning that the HPM can also be used for handling linear ordinary and partial differential equations. The test problems demonstrated in the chapter confirm that the HPM is an efficient method for solving linear/nonlinear ordinary, partial, and coupled differential equations. The series usually converges with an increase in the number of terms, but one may not expect the compact form solution always. Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The method may also be used to solve a system of coupled linear and nonlinear differential equations. This chapter first illustrates the basic idea of the HPM. It uses the present method to solve a nonlinear ordinary differential equation, a nonlinear partial differential equation, and a coupled nonlinear system of partial differential equations. It is worth mentioning that the HPM can also be used for handling linear ordinary and partial differential equations. The test problems demonstrated in the chapter confirm that the HPM is an efficient method for solving linear/nonlinear ordinary, partial, and coupled differential equations. The series usually converges with an increase in the number of terms, but one may not expect the compact form solution always. |
| Author | Karunakar, Perumandla Dilleswar Rao, Tharasi Mahato, Nisha Chakraverty, Snehashish |
| Author_xml | – sequence: 1 givenname: Snehashish surname: Chakraverty fullname: Chakraverty, Snehashish – sequence: 2 givenname: Nisha surname: Mahato fullname: Mahato, Nisha – sequence: 3 givenname: Perumandla surname: Karunakar fullname: Karunakar, Perumandla – sequence: 4 givenname: Tharasi surname: Dilleswar Rao fullname: Dilleswar Rao, Tharasi |
| BookMark | eNpVj8tOwzAQRY14CFr6ASAW_YGUGduJPUtUAUUqggWsLcedqhElLokr1L8nJSzoZkZzpXNHZyBO6lizENcIEwSQt2QsIpKWShc4CSuUR2L0L1RwfHBLdSYGCARGWjDqXIzatipBGbCUG7oQN7P4GVPc7Mav3KRtU_pUxXr8zGkVF5fidOnXLY_-9lC8P9y_TWfZ_OXxaXo3zyrsirMceUneQAiSrSLjC1sE0ho9LdAGpRBwYb1easjJe4vGGwq5VYZNyUGroVB973e15p3jMsaP1iG4vbM7cHZ759_RUbqnNk382nKbejBwnRq_Diu_Sdy0LjcapdRdl3GoqcOueqxiZte_soUlJUH9AD3aYa0 |
| ContentType | Book Chapter |
| Copyright | 2019 Wiley 2019 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2019 Wiley – notice: 2019 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119423461.ch12 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781119423430 9781119423447 9781119423461 1119423449 1119423430 1119423465 |
| Edition | 1 |
| EndPage | 139 |
| ExternalDocumentID | 10.1002/9781119423461.ch12 EBC5741224_107_149 8689320 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV ABARN ABQPQ ADUVA ADVEM AERYV AFOJC AFPKT AJFER AK3 AKQZE ALMA_UNASSIGNED_HOLDINGS AUUOE AZZ BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ CZZ ECNEQ ERSLE GEOUK GQOVZ IETMW IPJKO IVUIE JFSCD KKBTI LMJTD LQKAK LWYJN LYPXV MRDEW OCL OHILO OODEK W1A YPLAZ ZEEST ABAZT ABBFG ACGYG ACLGV ACNUM AENVZ AHWGJ FFUUA WIIVT |
| ID | FETCH-LOGICAL-i1072-51ef9a70cc2e8397a686c9441a9d18c33101d8a4f4059aa817a79c5837e7bec43 |
| ISBN | 9781119423423 1119423422 |
| IngestDate | Sat Nov 15 22:28:24 EST 2025 Tue Oct 21 07:34:01 EDT 2025 Fri Nov 11 10:38:51 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Art Perturbation methods IEEE Sections Ear Boundary conditions Strain Convergence |
| LCCallNum | QA371 .C435 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i1072-51ef9a70cc2e8397a686c9441a9d18c33101d8a4f4059aa817a79c5837e7bec43 |
| OCLC | 1090728073 |
| PQID | EBC5741224_107_149 |
| PageCount | 9 |
| ParticipantIDs | proquest_ebookcentralchapters_5741224_107_149 ieee_books_8689320 wiley_ebooks_10_1002_9781119423461_ch12_ch12 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-01-01 2019-04-30 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA |
| PublicationTitle | Advanced Numerical and Semi-Analytical Methods for Differential Equations |
| PublicationYear | 2019 |
| Publisher | Wiley John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| References | Wazwaz (c12-cit-0010) 2010 He (c12-cit-0009) 1999; 34 Liu (c12-cit-0002) 1997 Karunakar, Chakraverty (c12-cit-0004) 2018; 35 Liao (c12-cit-0007) 1995; 30 Karunakar, Chakraverty (c12-cit-0003) 2017; 27 Liao (c12-cit-0008) 1997; 20 He (c12-cit-0006) 2004; 151 He (c12-cit-0001) 1999; 178 He (c12-cit-0005) 2003; 135 Sweilam, Khader (c12-cit-0011) 2009; 58 |
| References_xml | – volume: 135 start-page: 73 issue: 1 year: 2003 end-page: 79 ident: c12-cit-0005 article-title: Homotopy perturbation method: a new nonlinear analytical technique publication-title: Applied Mathematics and Computation – volume: 151 start-page: 287 issue: 1 year: 2004 end-page: 292 ident: c12-cit-0006 article-title: The homotopy perturbation method for nonlinear oscillators with discontinuities publication-title: Applied Mathematics and Computation – start-page: 47 year: 1997 end-page: 53 ident: c12-cit-0002 article-title: New research directions in singular perturbation theory: artificial parameter approach and inverse‐perturbation technique – volume: 35 start-page: 1610 issue: 4 year: 2018 end-page: 1624 ident: c12-cit-0004 article-title: Solution of interval shallow water wave equations using homotopy perturbation method publication-title: Engineering Computations – volume: 30 start-page: 371 issue: 3 year: 1995 end-page: 380 ident: c12-cit-0007 article-title: An approximate solution technique not depending on small parameters: a special example publication-title: International Journal of Non‐Linear Mechanics – volume: 27 start-page: 2015 issue: 9 year: 2017 end-page: 2029 ident: c12-cit-0003 article-title: Comparison of solutions of linear and non‐linear shallow water wave equations using homotopy perturbation method publication-title: International Journal of Numerical Methods for Heat and Fluid Flow – volume: 58 start-page: 2134 issue: 11 year: 2009 end-page: 2141 ident: c12-cit-0011 article-title: Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method publication-title: Computers and Mathematics with Applications – volume: 178 start-page: 257 issue: 3 year: 1999 end-page: 262 ident: c12-cit-0001 article-title: Homotopy perturbation technique publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 34 start-page: 699 issue: 4 year: 1999 end-page: 708 ident: c12-cit-0009 article-title: Variational iteration method–a kind of non‐linear analytical technique: some examples publication-title: International Journal of Non‐Linear Mechanics – volume: 20 start-page: 91 issue: 2 year: 1997 end-page: 99 ident: c12-cit-0008 article-title: Boundary element method for general nonlinear differential operators publication-title: Engineering Analysis with Boundary Elements – year: 2010 ident: c12-cit-0010 article-title: Partial Differential Equations and Solitary Waves Theory |
| SSID | ssib037089579 ssj0002152863 ssib035724529 ssib043664869 ssib050313482 |
| Score | 1.561394 |
| Snippet | Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The... Homotopy perturbation method (HPM) is a semi‐analytical technique for solving linear as well as nonlinear ordinary/partial differential equations. The method... |
| SourceID | wiley proquest ieee |
| SourceType | Publisher |
| StartPage | 131 |
| SubjectTerms | coupled differential equations homotopy perturbation method nonlinear ordinary differential equation nonlinear partial differential equation |
| Title | Homotopy Perturbation Method |
| URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689320 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=149&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6wQG4MH6IjoF6YCcwLE4a21dGx6RpZYJN2i3yHFupGGmXtNv4Z_hbefZz06TjsgMXq4rcyPazX957_t77CHlnuY3tUFoKjpeiCc81FcZElLmPcWLEkFkkm-DjsTg_lye93p9lLsz1JS9LcXsrZ_9V1PAMhO1SZ-8h7ual8AB-g9ChBbFDu2YRd2OviDleXumPF3gVg5UAfphfE-rrj2Do-tjzRvtSDKD0kCJl7mLno6tFK4TnDFyXK1jfqOr9dzVFRJGqVD1ZRbIL5ZmYYE_VRaPjj1S1KNVPRG-fmMpdFeSXK1SQBxM4KmiEmpWmcKROddHewYcOKDid_Xb_hw_jBW5VHHo7WOHyozrBin-ggYIqDGWbm4Qu9G9BEUuw9xJMSb6j7bF6bKtfGn3URYBld0prR1gXda209ujz_hAsKrBiMvCCwQuSu_HB7Io6TjJ3d78bf8H9sUE2OAct-uDr6NvZURPDc5zAIo09AVUYKAtlxJqBh0Qt6Pzp7kADpU_Hu2n7SN7IOX1KnrjEl4HLSIHhb5GeKZ-Rx8dNXd_6OdlZymTQlskAZfKCnB2MTvcPaeDXoBOYLqPDyFip-J7WzMDR5CoVqZZgHyuZR0LHYPlHuVCJBaNeKiUirrjUQxFzw-HoJ_FLsllOS_OKDHSaaxkl6kJZnWiWSmZFLlIrHHKVibxPttxEM3cw6kykYCWzvT6hy2lnHhoQ8Mga51lna8Lpkw9-bbBznWHFbZZ11jVz6-qb7Xu-_jV5tNqyO2RzXi3MG_JQX88ndfU2yP4vLrh-vw |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Dilleswar+Rao%2C+Tharasi&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Chakraverty%2C+Snehashish&rft.atitle=Homotopy+Perturbation+Method&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch12&rft.externalDBID=149&rft.externalDocID=EBC5741224_107_149 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg |

