Interval Finite Element Method
Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FE...
Uloženo v:
| Vydáno v: | Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 217 - 229 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley
2019
John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Vydání: | 1 |
| Témata: | |
| ISBN: | 9781119423423, 1119423422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system. |
|---|---|
| AbstractList | Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system. Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system. |
| Author | Karunakar, Perumandla Dilleswar Rao, Tharasi Mahato, Nisha Chakraverty, Snehashish |
| Author_xml | – sequence: 1 givenname: Snehashish surname: Chakraverty fullname: Chakraverty, Snehashish – sequence: 2 givenname: Nisha surname: Mahato fullname: Mahato, Nisha – sequence: 3 givenname: Perumandla surname: Karunakar fullname: Karunakar, Perumandla – sequence: 4 givenname: Tharasi surname: Dilleswar Rao fullname: Dilleswar Rao, Tharasi |
| BookMark | eNpVj81OwzAMgIP4EWzsAeCA-gIddpw0zRFNG0wa4gLnKE1dtaK0Yy0g3p6OcmAX_0mf7W8iTpq2YSGuEeYIIG-tSRHRKkkqwXkoJR6J2b8hwfFBL-lMTBAsGJmCoXMx67oqAzKQWm3shbhZNz3vPn0draqm6jla1vzGTR89cl-2-aU4LXzd8ewvT8XLavm8eIg3T_frxd0mrhAMxiEnw0mQngPJhBQkXvNQ2YywIE8mAFOWBpCarCbmoHOFuQ-FCrkqkKaCxr1fVc3fjrO2fe0cgttbuwNrt7f-DQOlRmq7a98_uOtHMAz_73wdSr8d3DqnjUIplcNEOUl6wK5GrGJmN55Kk9RKK-kHHGxirA |
| ContentType | Book Chapter |
| Copyright | 2019 Wiley 2019 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2019 Wiley – notice: 2019 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119423461.ch21 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781119423430 9781119423447 9781119423461 1119423449 1119423430 1119423465 |
| Edition | 1 |
| EndPage | 229 |
| ExternalDocumentID | 10.1002/9781119423461.ch21 EBC5741224_164_235 8689292 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV ABARN ABQPQ ADUVA ADVEM AERYV AFOJC AFPKT AJFER AK3 AKQZE ALMA_UNASSIGNED_HOLDINGS AUUOE AZZ BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ CZZ ECNEQ ERSLE GEOUK GQOVZ IETMW IPJKO IVUIE JFSCD KKBTI LMJTD LQKAK LWYJN LYPXV MRDEW OCL OHILO OODEK W1A YPLAZ ZEEST ABAZT ABBFG ACGYG ACLGV ACNUM AENVZ AHWGJ FFUUA WIIVT |
| ID | FETCH-LOGICAL-i1071-cd37e6c2aec3263406a5e3269b31f3a37c0e3b8c0253953eec5d41dacf4cd4f13 |
| ISBN | 9781119423423 1119423422 |
| IngestDate | Sat Nov 15 22:28:24 EST 2025 Tue Oct 21 07:34:02 EDT 2025 Fri Nov 11 10:38:51 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Fuzzy sets Uncertainty Boundary conditions Eigenvalues and eigenfunctions Finite element analysis Mathematical model Method of moments |
| LCCallNum | QA371 .C435 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i1071-cd37e6c2aec3263406a5e3269b31f3a37c0e3b8c0253953eec5d41dacf4cd4f13 |
| OCLC | 1090728073 |
| PQID | EBC5741224_164_235 |
| PageCount | 13 |
| ParticipantIDs | proquest_ebookcentralchapters_5741224_164_235 ieee_books_8689292 wiley_ebooks_10_1002_9781119423461_ch21_ch21 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-01-01 2019-04-30 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA |
| PublicationTitle | Advanced Numerical and Semi-Analytical Methods for Differential Equations |
| PublicationYear | 2019 |
| Publisher | Wiley John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| References | Chakraverty, Hladík, Mahato (c21-cit-0020) 2017; 152 Mahato, Chakraverty (c21-cit-0025) 2016; 2 Mahato (c21-cit-0014) 2011 Chakraverty, Tapaswini, Behera (c21-cit-0016) 2016 Seshu (c21-cit-0004) 2003 Hladík, Daney, Tsigaridas (c21-cit-0024) 2011; 217 Nayak, Chakraverty (c21-cit-0011) 2018 Chen, Lian, Yang (c21-cit-0023) 2003; 39 Muhanna, Mullen (c21-cit-0012) 1999; 14 Neumaier (c21-cit-0018) 1990; 37 Balu, Rao (c21-cit-0015) 2012; 50 Shu‐Xiang, Zhen‐zhou (c21-cit-0010) 2001; 22 Chen, Yang (c21-cit-0009) 2000; 34 Alefeld, Herzberger (c21-cit-0006) 2012 Moore (c21-cit-0005) 1979; 2 Moens, Vandepitte (c21-cit-0013) 2005; 288 Rao (c21-cit-0003) 2013 Petyt (c21-cit-0002) 2010 Jaulin, Kieffer, Didrit, Walter (c21-cit-0008) 2001 Rohn (c21-cit-0019) 1989; 126 Deif (c21-cit-0022) 1991; 71 Zienkiewicz, Taylor, Zhu (c21-cit-0001) 2005 Mahato, Behera, Chakraverty (c21-cit-0017) 2013; 6 Karunakar, Chakraverty (c21-cit-0021) 2018; 22 Hansen (c21-cit-0007) 1965; 2 Mahato, Chakraverty (c21-cit-0026) 2016; 33 |
| References_xml | – year: 2005 ident: c21-cit-0001 article-title: The Finite Element Method: Its Basis and Fundamentals – year: 2001 ident: c21-cit-0008 article-title: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics – year: 2018 ident: c21-cit-0011 article-title: Interval Finite Element Method with MATLAB – volume: 2 year: 1979 ident: c21-cit-0005 article-title: Methods and Applications of Interval Analysis – year: 2010 ident: c21-cit-0002 article-title: Introduction to Finite Element Vibration Analysis – volume: 22 start-page: 1390 issue: 12 year: 2001 end-page: 1396 ident: c21-cit-0010 article-title: Interval arithmetic and static interval finite element method publication-title: Applied Mathematics and Mechanics – volume: 33 start-page: 855 issue: 3 year: 2016 end-page: 875 ident: c21-cit-0026 article-title: Filtering algorithm for eigenvalue bounds of fuzzy symmetric matrices publication-title: Engineering Computations – volume: 39 start-page: 419 issue: 5–6 year: 2003 end-page: 431 ident: c21-cit-0023 article-title: Interval eigenvalue analysis for structures with interval parameters publication-title: Finite Elements in Analysis and Design – volume: 2 start-page: 308 issue: 2 year: 1965 end-page: 320 ident: c21-cit-0007 article-title: Interval arithmetic in matrix computations, Part I publication-title: Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis – year: 2011 ident: c21-cit-0014 article-title: Fuzzy finite element method for vibration analysis of imprecisely defined bar – volume: 288 start-page: 431 issue: 3 year: 2005 end-page: 462 ident: c21-cit-0013 article-title: A fuzzy finite element procedure for the calculation of uncertain frequency‐response functions of damped structures: Part 1‐Procedure publication-title: Journal of Sound and Vibration – volume: 34 start-page: 75 issue: 1 year: 2000 end-page: 88 ident: c21-cit-0009 article-title: Interval finite element method for beam structures publication-title: Finite Elements in Analysis and Design – year: 2003 ident: c21-cit-0004 article-title: Textbook of Finite Element Analysis – year: 2013 ident: c21-cit-0003 article-title: The Finite Element Method in Engineering: Pergamon International Library of Science, Technology, Engineering and Social Studies – volume: 6 start-page: 9 issue: 1 year: 2013 end-page: 27 ident: c21-cit-0017 article-title: Fuzzy finite element method for vibration analysis of imprecisely defined bar publication-title: Int. J. Modern Math. Sci – volume: 14 start-page: 107 issue: 2 year: 1999 end-page: 117 ident: c21-cit-0012 article-title: Formulation of fuzzy finite‐element methods for solid mechanics problems publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 126 start-page: 39 year: 1989 end-page: 78 ident: c21-cit-0019 article-title: Systems of linear interval equations publication-title: Linear Algebra and Its Applications – volume: 152 start-page: 13 issue: 1 year: 2017 end-page: 31 ident: c21-cit-0020 article-title: A sign function approach to solve algebraically interval system of linear equations for nonnegative solutions publication-title: Fundamenta Informaticae – volume: 71 start-page: 61 issue: 1 year: 1991 end-page: 64 ident: c21-cit-0022 article-title: The interval eigenvalue problem publication-title: ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik – volume: 37 year: 1990 ident: c21-cit-0018 article-title: Interval Methods for Systems of Equations – volume: 22 start-page: 4811 issue: 14 year: 2018 end-page: 4818 ident: c21-cit-0021 article-title: Solving fully interval linear systems of equations using tolerable solution criteria publication-title: Soft Computing – volume: 217 start-page: 5236 issue: 12 year: 2011 end-page: 5242 ident: c21-cit-0024 article-title: A filtering method for the interval eigenvalue problem publication-title: Applied Mathematics and Computation – volume: 2 start-page: 044502 issue: 4 year: 2016 ident: c21-cit-0025 article-title: Filtering algorithm for real eigenvalue bounds of interval and fuzzy generalized eigenvalue problems publication-title: ASCE‐ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering – year: 2016 ident: c21-cit-0016 article-title: Fuzzy Differential Equations and Applications for Engineers and Scientists – volume: 50 start-page: 217 year: 2012 end-page: 230 ident: c21-cit-0015 article-title: High dimensional model representation based formulations for fuzzy finite element analysis of structures publication-title: Finite Elements in Analysis and Design – year: 2012 ident: c21-cit-0006 article-title: Introduction to Interval Computation |
| SSID | ssib037089579 ssj0002152863 ssib035724529 ssib043664869 ssib050313482 |
| Score | 1.5610595 |
| Snippet | Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On... |
| SourceID | wiley proquest ieee |
| SourceType | Publisher |
| StartPage | 217 |
| SubjectTerms | dynamic analysis eigenvalue problems Galerkin FEM interval boundary conditions interval finite element method interval uncertainties one‐dimensional structural system ordinary differential equation static analysis |
| Title | Interval Finite Element Method |
| URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689292 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=235&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELW2hQNwafkQW6DKgdsS2NhxHJ_Rlkpll6q0Um-W4zjaiCWFeLftr-G3MraTNOlKSD1wsaLISjIeZ_w8nnmD0PuE201EkoQ041kYYzkNMzolIc8IY5GyhQUcu_5Xtlikl5f8dDT60-bCXK9YVaW3t_zXf1U13ANl29TZB6i7eyjcgGtQOrSgdmjvIeKh79XHHLdH-ouNP4rxTADf9c-yC2twPCTehT139aMdJQMYP18qZW196LPfm54rrzv-t8WbfXBYpZe2DJPpvMlzuZSuJBNMLrOUkzNZlZ01l_Wmkj98LPepru3BQb7qFoQzeeVjlWQtTQkfslppcyPr_nR2nksYpslRaVHyZObD3hsJ-r6LqH8M49aV7eCgYQSo3-WCOeaA-mJMBpaW9RZt7N0mW-uB55ftPSOJPqqlz8m-x7P9r-47aIcxsKKPvsy-XZy09opa3suWG8iu_LZGcJoQV5Cq-WTc0Ip1IjSJW9D50_Z7mhI_g91Of8_kQM_5HnpmE2ECm6ECEuyjka6eo6fzjufXvECHrVoCr5agUUvg1fISXRzNzj8fh03FjbCMAGuGKidMJwpLrQDWEwB7kmq4gj83KogkTE01yVIFQJlwSrRWNI-jXKoiVnlcROQV2q2uKv0aBbZSGS5krCkHCXOWZThLC5zLFAxCovkY7VtRhf1VjEiTFHA6HqOwFVy4YIEmQll5SY2gAIABdArY5AtM6Bh9cKPjOxvhObixGIyssCPrmoOHdX-DntxN2rdod11v9Dv0WF2vS1MfNpPhL2alevU |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi%E2%80%90Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha+Rani&rft.au=Karunakar%2C+Perumandla&rft.au=Rao%2C+Tharasi+Dilleswar&rft.atitle=Interval+Finite+Element+Method&rft.date=2019-04-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781119423423&rft.spage=217&rft.epage=229&rft_id=info:doi/10.1002%2F9781119423461.ch21&rft.externalDocID=10.1002%2F9781119423461.ch21 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg |

