Interval Finite Element Method

Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FE...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 217 - 229
Hlavní autoři: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Médium: Kapitola
Jazyk:angličtina
Vydáno: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Vydání:1
Témata:
ISBN:9781119423423, 1119423422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system.
AbstractList Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system.
Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On the other hand, for fuzzy uncertainties FEM is known as fuzzy FEM discussed for uncertain structural systems. In structural mechanics, the FEM converts the governing differential equation of static and dynamic problems of structural systems having interval uncertainties to interval system of equations and interval eigenvalue problem, respectively. In this regard, the chapter presents the introduction and preliminaries related to system of equations and eigenvalue problems with uncertain (in terms of interval) parameters. It provides a detailed procedure for solving ordinary differential equation subject to interval boundary conditions using Galerkin FEM. As such, the authors refer the Galerkin FEM for solving differential equation with interval uncertainties as uncertain IGFEM. Lastly, the chapter considers uncertain static and dynamic analysis of one‐dimensional structural system.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  givenname: Snehashish
  surname: Chakraverty
  fullname: Chakraverty, Snehashish
– sequence: 2
  givenname: Nisha
  surname: Mahato
  fullname: Mahato, Nisha
– sequence: 3
  givenname: Perumandla
  surname: Karunakar
  fullname: Karunakar, Perumandla
– sequence: 4
  givenname: Tharasi
  surname: Dilleswar Rao
  fullname: Dilleswar Rao, Tharasi
BookMark eNpVj81OwzAMgIP4EWzsAeCA-gIddpw0zRFNG0wa4gLnKE1dtaK0Yy0g3p6OcmAX_0mf7W8iTpq2YSGuEeYIIG-tSRHRKkkqwXkoJR6J2b8hwfFBL-lMTBAsGJmCoXMx67oqAzKQWm3shbhZNz3vPn0draqm6jla1vzGTR89cl-2-aU4LXzd8ewvT8XLavm8eIg3T_frxd0mrhAMxiEnw0mQngPJhBQkXvNQ2YywIE8mAFOWBpCarCbmoHOFuQ-FCrkqkKaCxr1fVc3fjrO2fe0cgttbuwNrt7f-DQOlRmq7a98_uOtHMAz_73wdSr8d3DqnjUIplcNEOUl6wK5GrGJmN55Kk9RKK-kHHGxirA
ContentType Book Chapter
Copyright 2019 Wiley
2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley
– notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch21
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781119423430
9781119423447
9781119423461
1119423449
1119423430
1119423465
Edition 1
EndPage 229
ExternalDocumentID 10.1002/9781119423461.ch21
EBC5741224_164_235
8689292
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABQPQ
ADUVA
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
GEOUK
GQOVZ
IETMW
IPJKO
IVUIE
JFSCD
KKBTI
LMJTD
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
YPLAZ
ZEEST
ABAZT
ABBFG
ACGYG
ACLGV
ACNUM
AENVZ
AHWGJ
FFUUA
WIIVT
ID FETCH-LOGICAL-i1071-cd37e6c2aec3263406a5e3269b31f3a37c0e3b8c0253953eec5d41dacf4cd4f13
ISBN 9781119423423
1119423422
IngestDate Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:02 EDT 2025
Fri Nov 11 10:38:51 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Fuzzy sets
Uncertainty
Boundary conditions
Eigenvalues and eigenfunctions
Finite element analysis
Mathematical model
Method of moments
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i1071-cd37e6c2aec3263406a5e3269b31f3a37c0e3b8c0253953eec5d41dacf4cd4f13
OCLC 1090728073
PQID EBC5741224_164_235
PageCount 13
ParticipantIDs proquest_ebookcentralchapters_5741224_164_235
ieee_books_8689292
wiley_ebooks_10_1002_9781119423461_ch21_ch21
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References Chakraverty, Hladík, Mahato (c21-cit-0020) 2017; 152
Mahato, Chakraverty (c21-cit-0025) 2016; 2
Mahato (c21-cit-0014) 2011
Chakraverty, Tapaswini, Behera (c21-cit-0016) 2016
Seshu (c21-cit-0004) 2003
Hladík, Daney, Tsigaridas (c21-cit-0024) 2011; 217
Nayak, Chakraverty (c21-cit-0011) 2018
Chen, Lian, Yang (c21-cit-0023) 2003; 39
Muhanna, Mullen (c21-cit-0012) 1999; 14
Neumaier (c21-cit-0018) 1990; 37
Balu, Rao (c21-cit-0015) 2012; 50
Shu‐Xiang, Zhen‐zhou (c21-cit-0010) 2001; 22
Chen, Yang (c21-cit-0009) 2000; 34
Alefeld, Herzberger (c21-cit-0006) 2012
Moore (c21-cit-0005) 1979; 2
Moens, Vandepitte (c21-cit-0013) 2005; 288
Rao (c21-cit-0003) 2013
Petyt (c21-cit-0002) 2010
Jaulin, Kieffer, Didrit, Walter (c21-cit-0008) 2001
Rohn (c21-cit-0019) 1989; 126
Deif (c21-cit-0022) 1991; 71
Zienkiewicz, Taylor, Zhu (c21-cit-0001) 2005
Mahato, Behera, Chakraverty (c21-cit-0017) 2013; 6
Karunakar, Chakraverty (c21-cit-0021) 2018; 22
Hansen (c21-cit-0007) 1965; 2
Mahato, Chakraverty (c21-cit-0026) 2016; 33
References_xml – year: 2005
  ident: c21-cit-0001
  article-title: The Finite Element Method: Its Basis and Fundamentals
– year: 2001
  ident: c21-cit-0008
  article-title: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics
– year: 2018
  ident: c21-cit-0011
  article-title: Interval Finite Element Method with MATLAB
– volume: 2
  year: 1979
  ident: c21-cit-0005
  article-title: Methods and Applications of Interval Analysis
– year: 2010
  ident: c21-cit-0002
  article-title: Introduction to Finite Element Vibration Analysis
– volume: 22
  start-page: 1390
  issue: 12
  year: 2001
  end-page: 1396
  ident: c21-cit-0010
  article-title: Interval arithmetic and static interval finite element method
  publication-title: Applied Mathematics and Mechanics
– volume: 33
  start-page: 855
  issue: 3
  year: 2016
  end-page: 875
  ident: c21-cit-0026
  article-title: Filtering algorithm for eigenvalue bounds of fuzzy symmetric matrices
  publication-title: Engineering Computations
– volume: 39
  start-page: 419
  issue: 5–6
  year: 2003
  end-page: 431
  ident: c21-cit-0023
  article-title: Interval eigenvalue analysis for structures with interval parameters
  publication-title: Finite Elements in Analysis and Design
– volume: 2
  start-page: 308
  issue: 2
  year: 1965
  end-page: 320
  ident: c21-cit-0007
  article-title: Interval arithmetic in matrix computations, Part I
  publication-title: Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis
– year: 2011
  ident: c21-cit-0014
  article-title: Fuzzy finite element method for vibration analysis of imprecisely defined bar
– volume: 288
  start-page: 431
  issue: 3
  year: 2005
  end-page: 462
  ident: c21-cit-0013
  article-title: A fuzzy finite element procedure for the calculation of uncertain frequency‐response functions of damped structures: Part 1‐Procedure
  publication-title: Journal of Sound and Vibration
– volume: 34
  start-page: 75
  issue: 1
  year: 2000
  end-page: 88
  ident: c21-cit-0009
  article-title: Interval finite element method for beam structures
  publication-title: Finite Elements in Analysis and Design
– year: 2003
  ident: c21-cit-0004
  article-title: Textbook of Finite Element Analysis
– year: 2013
  ident: c21-cit-0003
  article-title: The Finite Element Method in Engineering: Pergamon International Library of Science, Technology, Engineering and Social Studies
– volume: 6
  start-page: 9
  issue: 1
  year: 2013
  end-page: 27
  ident: c21-cit-0017
  article-title: Fuzzy finite element method for vibration analysis of imprecisely defined bar
  publication-title: Int. J. Modern Math. Sci
– volume: 14
  start-page: 107
  issue: 2
  year: 1999
  end-page: 117
  ident: c21-cit-0012
  article-title: Formulation of fuzzy finite‐element methods for solid mechanics problems
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 126
  start-page: 39
  year: 1989
  end-page: 78
  ident: c21-cit-0019
  article-title: Systems of linear interval equations
  publication-title: Linear Algebra and Its Applications
– volume: 152
  start-page: 13
  issue: 1
  year: 2017
  end-page: 31
  ident: c21-cit-0020
  article-title: A sign function approach to solve algebraically interval system of linear equations for nonnegative solutions
  publication-title: Fundamenta Informaticae
– volume: 71
  start-page: 61
  issue: 1
  year: 1991
  end-page: 64
  ident: c21-cit-0022
  article-title: The interval eigenvalue problem
  publication-title: ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 37
  year: 1990
  ident: c21-cit-0018
  article-title: Interval Methods for Systems of Equations
– volume: 22
  start-page: 4811
  issue: 14
  year: 2018
  end-page: 4818
  ident: c21-cit-0021
  article-title: Solving fully interval linear systems of equations using tolerable solution criteria
  publication-title: Soft Computing
– volume: 217
  start-page: 5236
  issue: 12
  year: 2011
  end-page: 5242
  ident: c21-cit-0024
  article-title: A filtering method for the interval eigenvalue problem
  publication-title: Applied Mathematics and Computation
– volume: 2
  start-page: 044502
  issue: 4
  year: 2016
  ident: c21-cit-0025
  article-title: Filtering algorithm for real eigenvalue bounds of interval and fuzzy generalized eigenvalue problems
  publication-title: ASCE‐ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
– year: 2016
  ident: c21-cit-0016
  article-title: Fuzzy Differential Equations and Applications for Engineers and Scientists
– volume: 50
  start-page: 217
  year: 2012
  end-page: 230
  ident: c21-cit-0015
  article-title: High dimensional model representation based formulations for fuzzy finite element analysis of structures
  publication-title: Finite Elements in Analysis and Design
– year: 2012
  ident: c21-cit-0006
  article-title: Introduction to Interval Computation
SSID ssib037089579
ssj0002152863
ssib035724529
ssib043664869
ssib050313482
Score 1.5610595
Snippet Finite element method (FEM) combined with interval uncertainties are referred to as interval FEM which has already been used in various structural systems. On...
SourceID wiley
proquest
ieee
SourceType Publisher
StartPage 217
SubjectTerms dynamic analysis
eigenvalue problems
Galerkin FEM
interval boundary conditions
interval finite element method
interval uncertainties
one‐dimensional structural system
ordinary differential equation
static analysis
Title Interval Finite Element Method
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689292
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=235&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELW2hQNwafkQW6DKgdsS2NhxHJ_Rlkpll6q0Um-W4zjaiCWFeLftr-G3MraTNOlKSD1wsaLISjIeZ_w8nnmD0PuE201EkoQ041kYYzkNMzolIc8IY5GyhQUcu_5Xtlikl5f8dDT60-bCXK9YVaW3t_zXf1U13ANl29TZB6i7eyjcgGtQOrSgdmjvIeKh79XHHLdH-ouNP4rxTADf9c-yC2twPCTehT139aMdJQMYP18qZW196LPfm54rrzv-t8WbfXBYpZe2DJPpvMlzuZSuJBNMLrOUkzNZlZ01l_Wmkj98LPepru3BQb7qFoQzeeVjlWQtTQkfslppcyPr_nR2nksYpslRaVHyZObD3hsJ-r6LqH8M49aV7eCgYQSo3-WCOeaA-mJMBpaW9RZt7N0mW-uB55ftPSOJPqqlz8m-x7P9r-47aIcxsKKPvsy-XZy09opa3suWG8iu_LZGcJoQV5Cq-WTc0Ip1IjSJW9D50_Z7mhI_g91Of8_kQM_5HnpmE2ECm6ECEuyjka6eo6fzjufXvECHrVoCr5agUUvg1fISXRzNzj8fh03FjbCMAGuGKidMJwpLrQDWEwB7kmq4gj83KogkTE01yVIFQJlwSrRWNI-jXKoiVnlcROQV2q2uKv0aBbZSGS5krCkHCXOWZThLC5zLFAxCovkY7VtRhf1VjEiTFHA6HqOwFVy4YIEmQll5SY2gAIABdArY5AtM6Bh9cKPjOxvhObixGIyssCPrmoOHdX-DntxN2rdod11v9Dv0WF2vS1MfNpPhL2alevU
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi%E2%80%90Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha+Rani&rft.au=Karunakar%2C+Perumandla&rft.au=Rao%2C+Tharasi+Dilleswar&rft.atitle=Interval+Finite+Element+Method&rft.date=2019-04-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781119423423&rft.spage=217&rft.epage=229&rft_id=info:doi/10.1002%2F9781119423461.ch21&rft.externalDocID=10.1002%2F9781119423461.ch21
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg