Pair-Then-Aggregate: Simplified and Efficient Parallel Programming Paradigm for Secure Multi-Party Computation
Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm...
Saved in:
| Published in: | Proceedings - IEEE International Parallel and Distributed Processing Symposium pp. 629 - 640 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
03.06.2025
|
| Subjects: | |
| ISSN: | 1530-2075 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm design. PtA offers an easy-to-use API and a versatile execution engine that harnesses various levels of parallelism and adapts to different MPC deployments, algorithms, and input sizes. Evaluations on a real-world MPC platform demonstrate significant enhancements in scalability, adaptability, and ease of programming. PtA can process one billion input elements with 3-23 lines of C++ code in 5-74 seconds. It outperforms state-of-the-art implementations in 91.4 % of 35 test cases, achieving up to a 12.4 \times speedup with much less coding effort. 1 1 Our code is provided in https://github.com/Fannxy/Pair-then-Aggregate |
|---|---|
| AbstractList | Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm design. PtA offers an easy-to-use API and a versatile execution engine that harnesses various levels of parallelism and adapts to different MPC deployments, algorithms, and input sizes. Evaluations on a real-world MPC platform demonstrate significant enhancements in scalability, adaptability, and ease of programming. PtA can process one billion input elements with 3-23 lines of C++ code in 5-74 seconds. It outperforms state-of-the-art implementations in 91.4 % of 35 test cases, achieving up to a 12.4 \times speedup with much less coding effort. 1 1 Our code is provided in https://github.com/Fannxy/Pair-then-Aggregate |
| Author | Zhu, Xiaowei Jia, Xiaofeng Li, Yidong Wang, Guosai Yong, Xie He, Haoqing Chen, Kun Fan, Xiaoyu Xu, Wei |
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Fan fullname: Fan, Xiaoyu organization: Tsinghua University,IIIS – sequence: 2 givenname: Kun surname: Chen fullname: Chen, Kun organization: Ant Group – sequence: 3 givenname: Guosai surname: Wang fullname: Wang, Guosai organization: Tsingjiao Information Technology Co. Ltd – sequence: 4 givenname: Xiaowei surname: Zhu fullname: Zhu, Xiaowei organization: Ant Group – sequence: 5 givenname: Haoqing surname: He fullname: He, Haoqing organization: Tsinghua University,IIIS – sequence: 6 givenname: Xie surname: Yong fullname: Yong, Xie organization: Qinghai University,Department of Computer Technology and Application – sequence: 7 givenname: Xiaofeng surname: Jia fullname: Jia, Xiaofeng organization: Beijing Jiaotong University – sequence: 8 givenname: Yidong surname: Li fullname: Li, Yidong organization: Beijing Big Data Center – sequence: 9 givenname: Wei surname: Xu fullname: Xu, Wei organization: Tsinghua University,IIIS |
| BookMark | eNotkF9LwzAUxaMouM19A4V8gcybpE0b38b8N5hY2Hwet-1tjbTpyLKHfXuL-nQO5wcHzpmyKz94YuxewkJKsA_r4qnYmiQ1ZqFApQsAMOqCzW1mc61lqpXOzCWbjA6Egiy9YdPj8RtAgU7shPkCXRC7L_Ji2baBWoz0yLeuP3SucVRz9DV_bhpXOfKRFxiw66jjRRjagH3vfPsb1q7teTMEvqXqFIi_n7roxEjima-G_nCKGN3gb9l1g92R5v86Y58vz7vVm9h8vK5Xy41wEkwUdVVBLUswsrQJGqhMniSZMo0urSSNKaLWRtaU2zJDqsZddQ5gG9LKlqXWM3b31-uIaH8Irsdw3o-PZXmaZvoHZY5dLw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPS64566.2025.00062 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331532376 |
| EISSN | 1530-2075 |
| EndPage | 640 |
| ExternalDocumentID | 11078557 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i106t-dcc0d1b061b94a60c6844726f3b91e3a5aa3361de89b7aec075d8009fe329bb33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552207700054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 30 06:15:26 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i106t-dcc0d1b061b94a60c6844726f3b91e3a5aa3361de89b7aec075d8009fe329bb33 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_11078557 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-3 |
| PublicationDateYYYYMMDD | 2025-06-03 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE International Parallel and Distributed Processing Symposium |
| PublicationTitleAbbrev | IPDPS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020349 |
| Score | 1.9104825 |
| Snippet | Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 629 |
| SubjectTerms | C++ languages Codes Distributed processing Encoding Engines Multi-party computation Parallel processing Parallel programming parallel programming paradigm Scalability secure multi-party computation |
| Title | Pair-Then-Aggregate: Simplified and Efficient Parallel Programming Paradigm for Secure Multi-Party Computation |
| URI | https://ieeexplore.ieee.org/document/11078557 |
| WOSCitedRecordID | wos001552207700054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePBUHxXf5OA1NpvsZjfeRCsKUhaq0lvJa8uC3cq6Ffz3TtJt9eLBW5hABjKE-WYy3wxClxETzDmjCc2M8N-MimjKCkKpZkkRFREPPO7Xp3Q0yiYTmbdk9cCFcc6F4jN35ZfhL98uzNKnygY-VsmSJO2gTpqKFVlrE135RistRSeicvCY3-VjAfDA1yEwnzihfiLOrxEqwYPc9_6pexf1f7h4ON94mT205ap91FsPY8Dt2zxAVa7KmoDVK3IzgyDap8eu8bj0FeMF4EysKouHoWEEKMK5qv0UlTd_ti_QmsPhQWjL2RwDksUhE-9wYOgS2Gm-8EprsGUfvdwPn28fSDtMgZQQ9TXEGkNtpMF9axkrQY3I4jhlouBaRo6rRCnORWRdJnWqnAEoYQFMysJxJrXm_BB1q0XljhCWDGAFSKlKAI8wDQ7O8SSyqgD0YGV8jPr-_qbvq34Z0_XVnfwhP0U73kShAIufoW5TL9052jafTflRXwQrfwOHnakN |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT3VR8W3OXiNzSb7ijfRSou1LLRKbyXZZMuC3cq6Ffz3TtJt9eLBW5hABjKE-WYy3wxC1x4LmTGpIjROQ_vNKImiLCOUKhZkXuZxx-N-7UeDQTwei6QmqzsujDHGFZ-ZG7t0f_l6ni5sqqxtY5U4CKJNtBX4EPgs6Vrr-Mq2WqlJOh4V7V7ykAxDAAi2EoHZ1Am1M3F-DVFxPuSx-U_te6j1w8bDydrP7KMNUxyg5mocA65f5yEqEpmXBOxekLsphNE2QXaLh7mtGc8AaWJZaNxxLSNAEU5kaeeovNmzbYnWDA53Qp1PZxiwLHa5eIMdR5fATvWFl1qdNVvo5bEzuu-SepwCySHuq4hOU6o9BQ5cCV-GNA1j349YmHElPMNlICXnoadNLFQkTQpgQgOcFJnhTCjF-RFqFPPCHCMsGAALkFIZACJhClyc4YGnZQb4QQv_BLXs_U3elx0zJqurO_1DfoV2uqPn_qTfGzydoV1rLleOxc9RoyoX5gJtp59V_lFeOot_A38orFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Pair-Then-Aggregate%3A+Simplified+and+Efficient+Parallel+Programming+Paradigm+for+Secure+Multi-Party+Computation&rft.au=Fan%2C+Xiaoyu&rft.au=Chen%2C+Kun&rft.au=Wang%2C+Guosai&rft.au=Zhu%2C+Xiaowei&rft.date=2025-06-03&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=629&rft.epage=640&rft_id=info:doi/10.1109%2FIPDPS64566.2025.00062&rft.externalDocID=11078557 |