Pair-Then-Aggregate: Simplified and Efficient Parallel Programming Paradigm for Secure Multi-Party Computation

Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 629 - 640
Hlavní autori: Fan, Xiaoyu, Chen, Kun, Wang, Guosai, Zhu, Xiaowei, He, Haoqing, Yong, Xie, Jia, Xiaofeng, Li, Yidong, Xu, Wei
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 03.06.2025
Predmet:
ISSN:1530-2075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm design. PtA offers an easy-to-use API and a versatile execution engine that harnesses various levels of parallelism and adapts to different MPC deployments, algorithms, and input sizes. Evaluations on a real-world MPC platform demonstrate significant enhancements in scalability, adaptability, and ease of programming. PtA can process one billion input elements with 3-23 lines of C++ code in 5-74 seconds. It outperforms state-of-the-art implementations in 91.4 % of 35 test cases, achieving up to a 12.4 \times speedup with much less coding effort. 1 1 Our code is provided in https://github.com/Fannxy/Pair-then-Aggregate
AbstractList Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm design. PtA offers an easy-to-use API and a versatile execution engine that harnesses various levels of parallelism and adapts to different MPC deployments, algorithms, and input sizes. Evaluations on a real-world MPC platform demonstrate significant enhancements in scalability, adaptability, and ease of programming. PtA can process one billion input elements with 3-23 lines of C++ code in 5-74 seconds. It outperforms state-of-the-art implementations in 91.4 % of 35 test cases, achieving up to a 12.4 \times speedup with much less coding effort. 1 1 Our code is provided in https://github.com/Fannxy/Pair-then-Aggregate
Author Zhu, Xiaowei
Jia, Xiaofeng
Li, Yidong
Wang, Guosai
Yong, Xie
He, Haoqing
Chen, Kun
Fan, Xiaoyu
Xu, Wei
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Fan
  fullname: Fan, Xiaoyu
  organization: Tsinghua University,IIIS
– sequence: 2
  givenname: Kun
  surname: Chen
  fullname: Chen, Kun
  organization: Ant Group
– sequence: 3
  givenname: Guosai
  surname: Wang
  fullname: Wang, Guosai
  organization: Tsingjiao Information Technology Co. Ltd
– sequence: 4
  givenname: Xiaowei
  surname: Zhu
  fullname: Zhu, Xiaowei
  organization: Ant Group
– sequence: 5
  givenname: Haoqing
  surname: He
  fullname: He, Haoqing
  organization: Tsinghua University,IIIS
– sequence: 6
  givenname: Xie
  surname: Yong
  fullname: Yong, Xie
  organization: Qinghai University,Department of Computer Technology and Application
– sequence: 7
  givenname: Xiaofeng
  surname: Jia
  fullname: Jia, Xiaofeng
  organization: Beijing Jiaotong University
– sequence: 8
  givenname: Yidong
  surname: Li
  fullname: Li, Yidong
  organization: Beijing Big Data Center
– sequence: 9
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: Tsinghua University,IIIS
BookMark eNotkF9LwzAUxaMouM19A4V8gcybpE0b38b8N5hY2Hwet-1tjbTpyLKHfXuL-nQO5wcHzpmyKz94YuxewkJKsA_r4qnYmiQ1ZqFApQsAMOqCzW1mc61lqpXOzCWbjA6Egiy9YdPj8RtAgU7shPkCXRC7L_Ji2baBWoz0yLeuP3SucVRz9DV_bhpXOfKRFxiw66jjRRjagH3vfPsb1q7teTMEvqXqFIi_n7roxEjima-G_nCKGN3gb9l1g92R5v86Y58vz7vVm9h8vK5Xy41wEkwUdVVBLUswsrQJGqhMniSZMo0urSSNKaLWRtaU2zJDqsZddQ5gG9LKlqXWM3b31-uIaH8Irsdw3o-PZXmaZvoHZY5dLw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPS64566.2025.00062
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331532376
EISSN 1530-2075
EndPage 640
ExternalDocumentID 11078557
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i106t-dcc0d1b061b94a60c6844726f3b91e3a5aa3361de89b7aec075d8009fe329bb33
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552207700054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 30 06:15:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-dcc0d1b061b94a60c6844726f3b91e3a5aa3361de89b7aec075d8009fe329bb33
PageCount 12
ParticipantIDs ieee_primary_11078557
PublicationCentury 2000
PublicationDate 2025-June-3
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-3
  day: 03
PublicationDecade 2020
PublicationTitle Proceedings - IEEE International Parallel and Distributed Processing Symposium
PublicationTitleAbbrev IPDPS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020349
Score 1.910376
Snippet Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations,...
SourceID ieee
SourceType Publisher
StartPage 629
SubjectTerms C++ languages
Codes
Distributed processing
Encoding
Engines
Multi-party computation
Parallel processing
Parallel programming
parallel programming paradigm
Scalability
secure multi-party computation
Title Pair-Then-Aggregate: Simplified and Efficient Parallel Programming Paradigm for Secure Multi-Party Computation
URI https://ieeexplore.ieee.org/document/11078557
WOSCitedRecordID wos001552207700054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBUHkW85YHVNLEdx2ZD0AqWKlJB6lb5lSoSTVFJkfj3nN0UWBjYEkfyST5Z932Xu_sQulY8TYyXlmRMJ4TT0hMlBbxKmlNZKgDtPIpN5OOxnE5V0Tarx14Y730sPvM34TH-y3dLuw6pskHgKjLL8g7q5LnYNGt9s6swaKVt0UkTNXgqHoqJAHgQ6hBoSJwkQRHnl4RKjCCj3j9t76P-Ty8eLr6jzAHa8fUh6m3FGHB7N49QXehqRcDrNbmbA4kO6bFbPKlCxXgJOBPr2uFhHBgBhnChV0FF5TXsHQq0FrB5XHTVfIEByeKYifc4dugS-NJ84o3V6Ms-ehkNn-8fSSumQCpgfQ1x1iYuNRC-jeJaJFZIznMqSmZU6pnOtGZMpM5LZXLtLUAJB2BSlZ5RZQxjx6hbL2t_gjAEsCA1VNrAtTJwqUkc0CZOqeaCMX6K-uH8Zm-beRmz7dGd_bF-jvaCi2IBFrtA3Wa19pdo13401fvqKnr5C3vmqEQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT3VR8W3OXiN3U2yj3gTbWmxloVW6K0km2xZsFtZt4L_3km6rV48eNvNQgYyhPm-2Zn5ELoV3PeUiVMSMOkRTjNDRBzCa0wjGmcCQDt3YhPRcBhPJiKpm9VdL4wxxhWfmTv76P7l60W6tKmytuUqcRBE22gn4Jx6q3atDb-yo1bqJh3fE-1-8pSMQgAIthKB2tSJZzVxfomouBjSbf7T-gFq_XTj4WQTZw7RlimOUHMtx4Dr23mMikTmJQG_F-RhBjTaJsju8Si3NeMZIE0sC407bmQEGMKJLK2Oypvd25ZozWFzt6jz2RwDlsUuF2-w69El8KX6wiurzpst9NrtjB97pJZTIDnwvoroNPW0ryCAK8Fl6KVhzHlEw4wp4RsmAykZC31tYqEiaVIAExrgpMgMo0Ipxk5Qo1gU5hRhCGFWbChLLdsKwKnK00CcOKWSh4zxM9Sy5zd9X03MmK6P7vyP9Ru01xu_DKaD_vD5Au1bd7lyLHaJGlW5NFdoN_2s8o_y2nn8G2kzq4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Pair-Then-Aggregate%3A+Simplified+and+Efficient+Parallel+Programming+Paradigm+for+Secure+Multi-Party+Computation&rft.au=Fan%2C+Xiaoyu&rft.au=Chen%2C+Kun&rft.au=Wang%2C+Guosai&rft.au=Zhu%2C+Xiaowei&rft.date=2025-06-03&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=629&rft.epage=640&rft_id=info:doi/10.1109%2FIPDPS64566.2025.00062&rft.externalDocID=11078557