FPGA Implementation of Artificial Neural Networks for Model Predictive Control

Traditionally, the real-time implementation of Model Predictive Control (MPC) has been limited by processing and storage requirements. Recently, the idea of using Artificial Neural Networks (ANN) to approximate MPC control laws, including implementations on Field Programmable Gate Array (FPGA), has...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA) s. 1 - 6
Hlavní autori: VaAsquez, Juan J., CortaEs, Alfonso, Silva, CaEsar, Aguero, Juan C., Carvajal, Gonzalo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 20.10.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditionally, the real-time implementation of Model Predictive Control (MPC) has been limited by processing and storage requirements. Recently, the idea of using Artificial Neural Networks (ANN) to approximate MPC control laws, including implementations on Field Programmable Gate Array (FPGA), has been explored. This work presents a complete design flow from software controller to hardware implementation, utilizing Keras and QKeras for ANN design and quantization and HLS4ML with the AMD-Xilinx Design Suite for FPGA implementation. The evaluation and analysis conducted provides insights into the trade-offs involved in the proposed workflow. Experimental results are validated on a PYNQ-Z1 board, achieving latencies of less than one microsecond in the case study, demonstrating a hardware precision comparable to traditional MPC methods.
AbstractList Traditionally, the real-time implementation of Model Predictive Control (MPC) has been limited by processing and storage requirements. Recently, the idea of using Artificial Neural Networks (ANN) to approximate MPC control laws, including implementations on Field Programmable Gate Array (FPGA), has been explored. This work presents a complete design flow from software controller to hardware implementation, utilizing Keras and QKeras for ANN design and quantization and HLS4ML with the AMD-Xilinx Design Suite for FPGA implementation. The evaluation and analysis conducted provides insights into the trade-offs involved in the proposed workflow. Experimental results are validated on a PYNQ-Z1 board, achieving latencies of less than one microsecond in the case study, demonstrating a hardware precision comparable to traditional MPC methods.
Author Silva, CaEsar
Carvajal, Gonzalo
Aguero, Juan C.
VaAsquez, Juan J.
CortaEs, Alfonso
Author_xml – sequence: 1
  givenname: Juan J.
  surname: VaAsquez
  fullname: VaAsquez, Juan J.
  email: juan.vasquezca@sansano.usm.cl
  organization: Universidad Técnica Federico Santa María,Departamento de Electrónica
– sequence: 2
  givenname: Alfonso
  surname: CortaEs
  fullname: CortaEs, Alfonso
  email: alfonso.cortes@sansano.usm.cl
  organization: Universidad Técnica Federico Santa María,Departamento de Electrónica
– sequence: 3
  givenname: CaEsar
  surname: Silva
  fullname: Silva, CaEsar
  email: cesar.silva@usm.cl
  organization: Universidad Técnica Federico Santa María,Departamento de Electrónica
– sequence: 4
  givenname: Juan C.
  surname: Aguero
  fullname: Aguero, Juan C.
  email: juan.aguero@usm.cl
  organization: Universidad Técnica Federico Santa María,Departamento de Electrónica
– sequence: 5
  givenname: Gonzalo
  surname: Carvajal
  fullname: Carvajal, Gonzalo
  email: gonzalo.carvajalb@usm.cl
  organization: Universidad Técnica Federico Santa María,Departamento de Electrónica
BookMark eNo1j0FPAyEYRDHRg9b-Aw8knncFdoHlSDa2Nqm1Bz03BD4SIgsNRY3_3o3Ww-RlLi8zN-gy5QQI3VPSUkrUw2bUjR5HLZhgrGWE9S0lUoieDxdoqaQaOk46OVDKr9FutV9rvJmOESZI1dSQE84e61KDDzaYiHfwUX5Rv3J5P2GfC37ODiLeF3DB1vAJeMyplhxv0ZU38QTLMxfobfX4Oj4125f1vGvbBEpEbZQEKRwRoIwhXIICR62dGxNcOSr73htnqHWDsp2y1jPvrJ-jLDAhWLdAd3_eAACHYwmTKd-H_5vdDzD7T0o
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICA-ACCA62622.2024.10766458
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350378115
EndPage 6
ExternalDocumentID 10766458
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i106t-97e76d06e9aa057e9ed1cce9a2659d1744fada1cd89c39ccf2fdcffdc9ce26623
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513088100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 15 06:21:39 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-97e76d06e9aa057e9ed1cce9a2659d1744fada1cd89c39ccf2fdcffdc9ce26623
PageCount 6
ParticipantIDs ieee_primary_10766458
PublicationCentury 2000
PublicationDate 2024-Oct.-20
PublicationDateYYYYMMDD 2024-10-20
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA)
PublicationTitleAbbrev ICA-ACCA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8866798
Snippet Traditionally, the real-time implementation of Model Predictive Control (MPC) has been limited by processing and storage requirements. Recently, the idea of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms artificial neural network
Artificial neural networks
field programmable gate array
Field programmable gate arrays
Hardware
hls4ml
Logic gates
model predictive control
Predictive control
Predictive models
quantization
Quantization (signal)
Real-time systems
Software
Title FPGA Implementation of Artificial Neural Networks for Model Predictive Control
URI https://ieeexplore.ieee.org/document/10766458
WOSCitedRecordID wos001513088100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sEfGkYsU3C3rd2my3u9ljCFa9lB4UeivJ7gQKmkof_v7ObFPFgwcPIdlAEph9fLOZ-eYDuCdUKX2SGq4Z6qQOvUI6ckSl8tpW6DgWVUaxCTsapZOJGzdk9ciFQcSYfIZdvoyx_DD3a_5VRjPcGqMHaQta1potWesA7pq6mQ8veSazPM_IR1fMsVK6u3vil3ZKhI7h0T8_egydHxKeGH_DywnsYX0Ko-H4KROxpO9HwxqqxbwS2SLm_NBgElxuI55ifvdSkFcqWPHsnd7GURle30S-zVDvwNvw8TV_lo0kgpzR3m0lnUVrQs-gKwrytNBhSLynljIDF2h3oasiFIkPqfN9532lquArOpxHgmLVP4N2Pa_xHAShlLKs1KtKrVXhSw7IYukCdx9N6wvosDGmn9uqF9OdHS7_uH8Fh2xyXtdV7xraq8Uab2Dff61my8Vt7KsNQgKWYQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20inpSseK3C3pNTbfbJHsMwdpiDT1U6K0kuxMoaCpp6-93ZpsqHjx4CMkGksDsx5vNzHsDcE-okpt2FLBmqPaU9TNPkyPqSaPCAjXHonJXbCJM02gy0aOarO64MIjoks-wxZculm_nZsW_ymiGh0GgutE27HSVkv6arrUHd7Vy5sMgib04SWLy0iWzrKRqbZ75VT3FgUfv8J-fPYLmDw1PjL4B5hi2sDyBtDd6ioUT9X2veUOlmBcirlzWDw0nwYIb7uQyvBeC_FLBNc_e6G0cl-EVTiTrHPUmvPYex0nfq4sieDPavS09HWIYWD9AnWXka6FG2zaGWjLoakv7C1VkNmsbG2nT0cYUsrCmoEMbJDCWnVNolPMSz0AQTsmQa_XKnKyZmZxDsphryx1IE_scmmyM6cda92K6scPFH_dvYb8_fhlOh4P0-RIO2Py8ykv_ChrLaoXXsGs-l7NFdeP67QtD1Jmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Automation%2FXXVI+Congress+of+the+Chilean+Association+of+Automatic+Control+%28ICA-ACCA%29&rft.atitle=FPGA+Implementation+of+Artificial+Neural+Networks+for+Model+Predictive+Control&rft.au=VaAsquez%2C+Juan+J.&rft.au=CortaEs%2C+Alfonso&rft.au=Silva%2C+CaEsar&rft.au=Aguero%2C+Juan+C.&rft.date=2024-10-20&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICA-ACCA62622.2024.10766458&rft.externalDocID=10766458