Activity Prediction for Localizing the Events in Imagined Speech EEG Signals

Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the seg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ... International Winter Conference on Brain-Computer Interface S. 1 - 5
Hauptverfasser: Balasubramanian, Arun, Pandey, Kartik, Veer, Gautam, Samanta, Debasis
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 24.02.2025
Schlagworte:
ISSN:2572-7672
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the segments of the trials with actual information and remove those that contain the EEG from resting states could significantly advance our understanding of EEG signals in neuroscience and biomedical engineering. This work uses derivatives-based features to form the feature vectors used to train the classifiers. Based on feature importance analysis, it has been found that the derivative-based features contributed more to the classification than the traditionally preferred feature, band power in the alpha frequency band. Using the proposed features, the classification performance experienced a significant enhancement, surpassing the results reported in previous studies. The greater accuracy of the classifiers with the proposed features implies that they are effective at filtering out the resting state segments from imagined speech EEG signals.
AbstractList Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the segments of the trials with actual information and remove those that contain the EEG from resting states could significantly advance our understanding of EEG signals in neuroscience and biomedical engineering. This work uses derivatives-based features to form the feature vectors used to train the classifiers. Based on feature importance analysis, it has been found that the derivative-based features contributed more to the classification than the traditionally preferred feature, band power in the alpha frequency band. Using the proposed features, the classification performance experienced a significant enhancement, surpassing the results reported in previous studies. The greater accuracy of the classifiers with the proposed features implies that they are effective at filtering out the resting state segments from imagined speech EEG signals.
Author Balasubramanian, Arun
Veer, Gautam
Samanta, Debasis
Pandey, Kartik
Author_xml – sequence: 1
  givenname: Arun
  surname: Balasubramanian
  fullname: Balasubramanian, Arun
  email: arunbsmn@kgpian.iitkgp.ac.in
  organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India
– sequence: 2
  givenname: Kartik
  surname: Pandey
  fullname: Pandey, Kartik
  email: kartik4323@kgpian.iitkgp.ac.in
  organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India
– sequence: 3
  givenname: Gautam
  surname: Veer
  fullname: Veer, Gautam
  email: gautamveer@kgpian.iitkgp.ac.in
  organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India
– sequence: 4
  givenname: Debasis
  surname: Samanta
  fullname: Samanta, Debasis
  email: dsamanta@iitkgp.ac.in
  organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India
BookMark eNo1kNtKw0AURUdRsNb-gcj8QOJcOpfzWENaAwGF6nOZzpy0I-2kJKFQv96A-rTYm8V-2PfkJrUJCXniLOecwfNLUWnFrM0FEyofG8nnXF6RGRiwUnIlOAi4JhOhjMiMNuKOzPr-izEmuQVg8wmpF36I5zhc6HuHIY6hTbRpO1q33h3id0w7OuyRlmdMQ09jotXR7WLCQNcnRL-nZbmi67hL7tA_kNtmBM7-OCWfy_KjeM3qt1VVLOoscqaHzFoLjdfzrfYcg1fC-GYL0gCqrRYueOEhKG2kEw6YRG9HAQQqFtArzuWUPP7uRkTcnLp4dN1l83-A_AG-KVEl
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BCI65088.2025.10931413
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9798331521929
EISSN 2572-7672
EndPage 5
ExternalDocumentID 10931413
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i106t-8889fc64b6c1edc527cfb9379e5b62adc2c9d5673a2a903ec87cf92e50dec5113
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Apr 02 05:44:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-8889fc64b6c1edc527cfb9379e5b62adc2c9d5673a2a903ec87cf92e50dec5113
PageCount 5
ParticipantIDs ieee_primary_10931413
PublicationCentury 2000
PublicationDate 2025-Feb.-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle The ... International Winter Conference on Brain-Computer Interface
PublicationTitleAbbrev BCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189904
Score 1.900214
Snippet Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
EEG
Electroencephalography
Feature extraction
feature importance
frequency analysis
Image segmentation
Imagined speech
Information filters
Location awareness
neural decoding
Neuroscience
resting state
Signal processing
Speech processing
Vectors
Title Activity Prediction for Localizing the Events in Imagined Speech EEG Signals
URI https://ieeexplore.ieee.org/document/10931413
WOSCitedRecordID wos001471781800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6UePDkA4zv9GC8FZbutqVHJIuSEEKCJtzItp3VPbAQHib6650WxHjw4G2zaXeTadP5ZjrffITcJUYYoUEyLvOMJUYB816OaQmJyPHYlFEexCbUYNAaj_VwS1YPXBgACMVnUPeP4S7fzezap8oavvVRM_EatftKqQ1Za5dQwc2JJ2uyZQHj0MZDpxfwB0aBXNS_J_-SUQlepHv0z_8fk9oPH48Od57mhOxBeUqq7RID5ukHvaehjDPkx6uk37YbQQic4S9hvOEpIlPa916r-MQPUAR9NPWFjktalLQ39UpF4OhoDmDfaJo-0lHx6hsr18hLN33uPLGtZAIrMLZbMYxndW5lYqRtgrOCK5sbRCAahJE8c5Zb7YRUccYzHcVgWzhAcxCRA4vYKz4jlXJWwjmh2gCGapBHGtDrW4dRdOw0oidQqqmtviA1b6HJfNMVY_JtnMs_3l-RQ78OgQ6eXJPKarGGG3Jg31fFcnEb1vIL-g2etA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYKJR4t44wGxpU0d26nHUgVaEapKLVK3KrEvkKFp1QcS_HrO7gMxMLBFkR1FZ8v33fm--wi546lIhQLpMZklHk9D8KyX85QELjI8NqWfObGJsNttDIeqtyarOy4MALjiM6jaR3eXbyZ6aVNlNdv6qM6tRu2u4JzVV3StbUoFtyeerXzNA8bBtYdWxyEQjAOZqG6m_xJScX7k8fCff3BEKj-MPNrb-ppjsgPFCSk3CwyZx5_0nrpCTpchL5O4qVeSEDjDXsNY01PEpjS2fiv_wg9QhH00sqWOc5oXtDO2WkVgaH8KoN9pFD3Rfv5mWytXyOtjNGi1vbVogpdjdLfwMKJVmZY8lboORgsW6ixFDKJApJIlRjOtjJBhkLBE-QHoBg5QDIRvQCP6Ck5JqZgUcEaoSgGDNch8Bej3tcE4OjAK8ROEYV1pdU4q1kKj6aovxmhjnIs_3t-S_fbgJR7Fne7zJTmwa-LI4fyKlBazJVyTPf2xyOezG7eu32vqofs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Activity+Prediction+for+Localizing+the+Events+in+Imagined+Speech+EEG+Signals&rft.au=Balasubramanian%2C+Arun&rft.au=Pandey%2C+Kartik&rft.au=Veer%2C+Gautam&rft.au=Samanta%2C+Debasis&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBCI65088.2025.10931413&rft.externalDocID=10931413