Activity Prediction for Localizing the Events in Imagined Speech EEG Signals
Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the seg...
Gespeichert in:
| Veröffentlicht in: | The ... International Winter Conference on Brain-Computer Interface S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
24.02.2025
|
| Schlagworte: | |
| ISSN: | 2572-7672 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the segments of the trials with actual information and remove those that contain the EEG from resting states could significantly advance our understanding of EEG signals in neuroscience and biomedical engineering. This work uses derivatives-based features to form the feature vectors used to train the classifiers. Based on feature importance analysis, it has been found that the derivative-based features contributed more to the classification than the traditionally preferred feature, band power in the alpha frequency band. Using the proposed features, the classification performance experienced a significant enhancement, surpassing the results reported in previous studies. The greater accuracy of the classifiers with the proposed features implies that they are effective at filtering out the resting state segments from imagined speech EEG signals. |
|---|---|
| AbstractList | Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the generation of EEG during the task as it is likely that most of the data collected is that of resting state. Developing a filter to identify the segments of the trials with actual information and remove those that contain the EEG from resting states could significantly advance our understanding of EEG signals in neuroscience and biomedical engineering. This work uses derivatives-based features to form the feature vectors used to train the classifiers. Based on feature importance analysis, it has been found that the derivative-based features contributed more to the classification than the traditionally preferred feature, band power in the alpha frequency band. Using the proposed features, the classification performance experienced a significant enhancement, surpassing the results reported in previous studies. The greater accuracy of the classifiers with the proposed features implies that they are effective at filtering out the resting state segments from imagined speech EEG signals. |
| Author | Balasubramanian, Arun Veer, Gautam Samanta, Debasis Pandey, Kartik |
| Author_xml | – sequence: 1 givenname: Arun surname: Balasubramanian fullname: Balasubramanian, Arun email: arunbsmn@kgpian.iitkgp.ac.in organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India – sequence: 2 givenname: Kartik surname: Pandey fullname: Pandey, Kartik email: kartik4323@kgpian.iitkgp.ac.in organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India – sequence: 3 givenname: Gautam surname: Veer fullname: Veer, Gautam email: gautamveer@kgpian.iitkgp.ac.in organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India – sequence: 4 givenname: Debasis surname: Samanta fullname: Samanta, Debasis email: dsamanta@iitkgp.ac.in organization: Indian Institute of Technology,Dept. of Computer Science and Enginnering,Kharagpur,India |
| BookMark | eNo1kNtKw0AURUdRsNb-gcj8QOJcOpfzWENaAwGF6nOZzpy0I-2kJKFQv96A-rTYm8V-2PfkJrUJCXniLOecwfNLUWnFrM0FEyofG8nnXF6RGRiwUnIlOAi4JhOhjMiMNuKOzPr-izEmuQVg8wmpF36I5zhc6HuHIY6hTbRpO1q33h3id0w7OuyRlmdMQ09jotXR7WLCQNcnRL-nZbmi67hL7tA_kNtmBM7-OCWfy_KjeM3qt1VVLOoscqaHzFoLjdfzrfYcg1fC-GYL0gCqrRYueOEhKG2kEw6YRG9HAQQqFtArzuWUPP7uRkTcnLp4dN1l83-A_AG-KVEl |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BCI65088.2025.10931413 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISBN | 9798331521929 |
| EISSN | 2572-7672 |
| EndPage | 5 |
| ExternalDocumentID | 10931413 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i106t-8889fc64b6c1edc527cfb9379e5b62adc2c9d5673a2a903ec87cf92e50dec5113 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Apr 02 05:44:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i106t-8889fc64b6c1edc527cfb9379e5b62adc2c9d5673a2a903ec87cf92e50dec5113 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10931413 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Feb.-24 |
| PublicationDateYYYYMMDD | 2025-02-24 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | The ... International Winter Conference on Brain-Computer Interface |
| PublicationTitleAbbrev | BCI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003189904 |
| Score | 1.900214 |
| Snippet | Imagined speech electroencephalogram (EEG) signals are often collected for longer durations than necessary, leading to a difficulty in understanding the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy EEG Electroencephalography Feature extraction feature importance frequency analysis Image segmentation Imagined speech Information filters Location awareness neural decoding Neuroscience resting state Signal processing Speech processing Vectors |
| Title | Activity Prediction for Localizing the Events in Imagined Speech EEG Signals |
| URI | https://ieeexplore.ieee.org/document/10931413 |
| WOSCitedRecordID | wos001471781800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6UePDkA4zv9GC8FZbutqVHJIuSEEKCJtzItp3VPbAQHib6650WxHjw4G2zaXeTadP5ZjrffITcJUYYoUEyLvOMJUYB816OaQmJyPHYlFEexCbUYNAaj_VwS1YPXBgACMVnUPeP4S7fzezap8oavvVRM_EatftKqQ1Za5dQwc2JJ2uyZQHj0MZDpxfwB0aBXNS_J_-SUQlepHv0z_8fk9oPH48Od57mhOxBeUqq7RID5ukHvaehjDPkx6uk37YbQQic4S9hvOEpIlPa916r-MQPUAR9NPWFjktalLQ39UpF4OhoDmDfaJo-0lHx6hsr18hLN33uPLGtZAIrMLZbMYxndW5lYqRtgrOCK5sbRCAahJE8c5Zb7YRUccYzHcVgWzhAcxCRA4vYKz4jlXJWwjmh2gCGapBHGtDrW4dRdOw0oidQqqmtviA1b6HJfNMVY_JtnMs_3l-RQ78OgQ6eXJPKarGGG3Jg31fFcnEb1vIL-g2etA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYKJR4t44wGxpU0d26nHUgVaEapKLVK3KrEvkKFp1QcS_HrO7gMxMLBFkR1FZ8v33fm--wi546lIhQLpMZklHk9D8KyX85QELjI8NqWfObGJsNttDIeqtyarOy4MALjiM6jaR3eXbyZ6aVNlNdv6qM6tRu2u4JzVV3StbUoFtyeerXzNA8bBtYdWxyEQjAOZqG6m_xJScX7k8fCff3BEKj-MPNrb-ppjsgPFCSk3CwyZx5_0nrpCTpchL5O4qVeSEDjDXsNY01PEpjS2fiv_wg9QhH00sqWOc5oXtDO2WkVgaH8KoN9pFD3Rfv5mWytXyOtjNGi1vbVogpdjdLfwMKJVmZY8lboORgsW6ixFDKJApJIlRjOtjJBhkLBE-QHoBg5QDIRvQCP6Ck5JqZgUcEaoSgGDNch8Bej3tcE4OjAK8ROEYV1pdU4q1kKj6aovxmhjnIs_3t-S_fbgJR7Fne7zJTmwa-LI4fyKlBazJVyTPf2xyOezG7eu32vqofs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Activity+Prediction+for+Localizing+the+Events+in+Imagined+Speech+EEG+Signals&rft.au=Balasubramanian%2C+Arun&rft.au=Pandey%2C+Kartik&rft.au=Veer%2C+Gautam&rft.au=Samanta%2C+Debasis&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBCI65088.2025.10931413&rft.externalDocID=10931413 |