End-to-End Learning of Beam Probing and RSSI-Based Multi-User Hybrid Precoding Design

This paper presents an end-to-end (E2E) autoencoder learning framework that relies on unsupervised deep learning for the joint design of millimeter wave (mmWave) probing beams and hybrid precoding matrices in multi-user communication systems. Our model utilizes prior channel observations to achieve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Global Communications Conference (Online) s. 1948 - 1953
Hlavní autoři: Abdallah, Asmaa, Celik, Abdulkadir, Alkhateeb, Ahmed, Eltawil, Ahmed M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.12.2024
Témata:
ISSN:2576-6813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an end-to-end (E2E) autoencoder learning framework that relies on unsupervised deep learning for the joint design of millimeter wave (mmWave) probing beams and hybrid precoding matrices in multi-user communication systems. Our model utilizes prior channel observations to achieve two main objectives: designing a compact set of probing beams and predicting off-grid radio frequency (RF) beamforming vectors. The E2E learning framework optimizes probing beams in an unsupervised manner, concentrating sensing power on promising spatial directions based on the environment. To this aim, we develop a neural network architecture respecting RF chain constraints and model received signal strength (RSS) using complex-valued convolutional layers. The autoencoder is trained to directly produce RF beamforming vectors for hybrid architectures based on projected RSS indicators (RSSIs). Once RF beamforming vectors for multi-users are predicted, baseband digital precoders are designed by accounting for multi-user interference. The autoencoder neural network is trained E2E in an unsupervised manner with a customized loss function aimed at maximizing RSS. In a system with 64 antennas, 4 RF chains, and 4 users, our approach requires only 8 probing beams to design RF beamforming vectors, compared to the conventional predefined codebooks with 64 or 128 beams.
ISSN:2576-6813
DOI:10.1109/GLOBECOM52923.2024.10901513