Machine Learning Meets EEG: A Novel Approach to PGA-Based Authentication Systems

The development of secure and effective identification/authentication systems is an ongoing challenge in the field of computer science, as new techniques and methods continue to emerge. In the context of this ever-evolving landscape, we propose a new multi-factor authentication system. The proposed...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 924 - 929
Main Authors: Katoikos, Ioannis, Fidas, Christos A., Koukopoulos, Dimitrios
Format: Conference Proceeding
Language:English
Published: IEEE 18.12.2024
Subjects:
ISSN:1946-0759
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development of secure and effective identification/authentication systems is an ongoing challenge in the field of computer science, as new techniques and methods continue to emerge. In the context of this ever-evolving landscape, we propose a new multi-factor authentication system. The proposed system combines Picture Gesture Authentication (PGA) with simultaneous acquisition of users' brain signals (EEG) to enhance security. To assess the efficacy of the proposed model, we collected data from 14 individuals, each of whom participated in 20 trials to create a single-person authentication system. Features were extracted and multiple machine learning algorithms were trained and tested in three different scenarios. The first scenario utilized the created dataset to find the most effective machine learning algorithms and features; the second applied augmentation techniques for a more balanced dataset; the third used only the most important features. The results were encouraging, indicating that the proposed model works well in enhancing the level of security.
AbstractList The development of secure and effective identification/authentication systems is an ongoing challenge in the field of computer science, as new techniques and methods continue to emerge. In the context of this ever-evolving landscape, we propose a new multi-factor authentication system. The proposed system combines Picture Gesture Authentication (PGA) with simultaneous acquisition of users' brain signals (EEG) to enhance security. To assess the efficacy of the proposed model, we collected data from 14 individuals, each of whom participated in 20 trials to create a single-person authentication system. Features were extracted and multiple machine learning algorithms were trained and tested in three different scenarios. The first scenario utilized the created dataset to find the most effective machine learning algorithms and features; the second applied augmentation techniques for a more balanced dataset; the third used only the most important features. The results were encouraging, indicating that the proposed model works well in enhancing the level of security.
Author Koukopoulos, Dimitrios
Katoikos, Ioannis
Fidas, Christos A.
Author_xml – sequence: 1
  givenname: Ioannis
  surname: Katoikos
  fullname: Katoikos, Ioannis
  email: i.katoikos@ac.upatras.gr
  organization: University of Patras,Department of Electrical and Computer Engineering,Patras,Greece
– sequence: 2
  givenname: Christos A.
  surname: Fidas
  fullname: Fidas, Christos A.
  email: fidas@upatras.gr
  organization: University of Patras,Department of Electrical and Computer Engineering,Patras,Greece
– sequence: 3
  givenname: Dimitrios
  surname: Koukopoulos
  fullname: Koukopoulos, Dimitrios
  email: dkoukopoulos@upatras.gr
  organization: University of Patras,Department of History and Archaeology,Agrinio,Greece
BookMark eNotj9FKwzAUhqMoOOfeQCEv0HnStGmPd3HMOuh0oF6PdD1xkS0tTRT29hb06oOfjx--a3bhO0-M3QmYCwF4v1qsa61EqdJ5Cmk2BxAyP2MzLLCUOcgiK0s8ZxOBmUqgyPGKzUL4gtEDVChxwjZrs9s7T7wmM3jnP_maKAa-XFYPXPOX7ocOXPf90I0ejx3fVDp5NIFarr_jnnx0OxNd5_nbKUQ6hht2ac0h0OyfU_bxtHxfPCf1a7Va6DpxAlRMFBFQ2yqrSEAjbY4WqDEqBbTYWswQTDnOohFKFA1AWhhQrQWRErVg5JTd_v06Itr2gzua4bQdu0BmeSF_AWSKUZg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA61862.2024.00135
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350374889
EISSN 1946-0759
EndPage 929
ExternalDocumentID 10903457
Genre orig-research
GrantInformation_xml – fundername: Hellenic Foundation for Research & Innovation (HFRI)
  funderid: 10.13039/501100013209
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i106t-6ee0edd6f6e10b3f59f0eba6209f9df9490a83f51b1617b0027a06df012eed0a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001468515500127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Mar 12 06:17:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-6ee0edd6f6e10b3f59f0eba6209f9df9490a83f51b1617b0027a06df012eed0a3
PageCount 6
ParticipantIDs ieee_primary_10903457
PublicationCentury 2000
PublicationDate 2024-Dec.-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-18
  day: 18
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ICMLA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.284645
Snippet The development of secure and effective identification/authentication systems is an ongoing challenge in the field of computer science, as new techniques and...
SourceID ieee
SourceType Publisher
StartPage 924
SubjectTerms Authentication
Brain modeling
Electroencephalography
Electronics packaging
Feature extraction
Graphical/visual passwords
Human-centered computiug→ Laboratory experiments
Machine learning
Machine learning algorithms
Multi-factor authentication
Recording
Security
security and privacy → Biometrics
Visualization
Title Machine Learning Meets EEG: A Novel Approach to PGA-Based Authentication Systems
URI https://ieeexplore.ieee.org/document/10903457
WOSCitedRecordID wos001468515500127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sBq6tRpbLOFqi1ItMoAUrfKH2dUCTWoTfv78aWBsjCwJV4cnaV7vst77wi5EyG4eLKe6ZiAWRrzHzMgHfPcWZsEb6VV9bAJOZmo6VQXjVi91sIAQE0-g3t8rP_l-9KtsVXWQRKhSHtyn-xLKbdirV1DJV7GtdCNSie-dZ7745cc_eBRcNVFl-wEp7r9mqJSg8jw6J_bH5P2To5Hix-gOSF7sDglxbimQQJtHFLf6RigWtHBYPRAczopN_BB88YxnFYlLUY5e4yY5Sm2xZAktO3W0ca0vE3ehoPX_hNrxiOweazjKpYBcPA-Cxkk3IrQ04GDNVmX66B90KnmRsXlxGINg2gsDc98iJAUv5cbcUZai3IB54Rq09OxEJE-CJc671XmDHc-GBGMUom5IG0Mx-xz64Ax-47E5R_rV-QQI460j0Rdk1a1XMMNOXCbar5a3tbn9gXSYpof
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgIMEEiCLeeGA1dZqn2ULVl2iiDEXqVvlxjSqhBLVpvx_bDZSFgc32ZF1LPr7X55yL0KOvtTQnqwgzFzAJzP1HOMSSKCqF8LQSsUhcs4k4z5PZjBWNWN1pYQDAkc_gyQ7dX76q5NqWyjqWROgHYbyPDsIg6HpbudaupGKe48xnjU7HzDrjXjZJrSO8lVx1rU-2Z_u6_eqj4mBkcPLPDZyi9k6Qh4sfqDlDe1CeoyJzREjAjUfqO84A6hXu94fPOMV5tYEPnDae4biucDFMyYtBLYVtYczShLb1OtzYlrfR26A_7Y1I0yCBLEwmV5MIgIJSkY7Ao8LXIdMUBI-6lGmmNAsY5YlZ9oTNYiwex5xGShtQMvul3L9ArbIq4RJhxkNmUpFYaV8GUqkkkpxKpbmveZJ4_Aq1bTjmn1sPjPl3JK7_WH9AR6NpNplPxvnrDTq20bckEC-5Ra16uYY7dCg39WK1vHdn-AUIz51m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Machine+Learning+Meets+EEG%3A+A+Novel+Approach+to+PGA-Based+Authentication+Systems&rft.au=Katoikos%2C+Ioannis&rft.au=Fidas%2C+Christos+A.&rft.au=Koukopoulos%2C+Dimitrios&rft.date=2024-12-18&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=924&rft.epage=929&rft_id=info:doi/10.1109%2FICMLA61862.2024.00135&rft.externalDocID=10903457