Towards A Lightweight Deep Learning Framework for Real-Time Vital Sign Prediction with RGB Cameras

Remote photoplethysmography (rPPG) is a technology that extracts blood volume pulse (BVP) signals by analyzing the wavelength differences of light reflected from a person's skin using devices such as RGB and infrared cameras. This technology enables the measurement and estimation of various phy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... International Winter Conference on Brain-Computer Interface s. 1 - 5
Hlavní autoři: Kim, Seong-Wook, Park, Hyeong-Yeong, Lee, In-Gyu, Jang, Se-Na, Yu, Seong-Hyun, Oh, Jun-Young, Moon, Gee-Myung, Jeong, Ji-Hoon
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.02.2025
Témata:
ISSN:2572-7672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Remote photoplethysmography (rPPG) is a technology that extracts blood volume pulse (BVP) signals by analyzing the wavelength differences of light reflected from a person's skin using devices such as RGB and infrared cameras. This technology enables the measurement and estimation of various physiological signals, including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), respiratory rate, and oxygen saturation. In this study, we overcame the limitations of existing rPPG methods by constructing a custom RGB-rPPG dataset. The dataset was collected from 14 subjects using an RGB camera (a standard webcam), wearable device, and sphygmomanometer. The leave-one-subject-out (LOSO) approach was applied for model training to predict SBP and DBP, while HR was estimated using a fast Fourier transform (FFT). The average mean absolute error for SBP/DBP prediction and HR estimation were 4.55 (±2.7660) mmHg, 1.84 (±1.6064) mmHg, and 6.91 (±8.0319) bpm, respectively. These results demonstrate that the constructed RGB-rPPG dataset and the proposed method are effective for predicting physiological signs.
ISSN:2572-7672
DOI:10.1109/BCI65088.2025.10931624