Bleaching Detection in Coral Reef using Deep Convolutional Autoencoder based Model
The coral reefs have been considered as an essential component of the marine ecosystem as they help ecologically as well as toward the development of medicine related to the severe diseases such as HIV infections, heart disease, etc. The Coral bleaching phenomenon has been found as the main cause th...
Uloženo v:
| Vydáno v: | The ... CSI International Symposium on Artificial Intelligence & Signal Processing (Online) s. 01 - 05 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.10.2024
|
| Témata: | |
| ISSN: | 2640-5768 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The coral reefs have been considered as an essential component of the marine ecosystem as they help ecologically as well as toward the development of medicine related to the severe diseases such as HIV infections, heart disease, etc. The Coral bleaching phenomenon has been found as the main cause that increases the worldwide dying out risk of coral reefs. The Artificial Intelligence (AI) based approach can become an essential way of early detection of coral reefs bleaching. This work has proposed a Deep Convolution Autoencoder (DCAE) based model to detect the bleaching of the coral reefs. The Proposed DCAE model has been utilized to extract the deep feature image from the underwater image of coral reefs, which can be further utilize for the bleaching detection. The Kaggle repository of coral reef health dataset comprising the underwater images of healthy corals and bleached corals have been taken for the experimention. The proposed DCAE approach has achieved an accuracy of 76.60%, sensitivity of 80%, precision of 73.46%, and F1-Score of 76.59% in detecting the bleaching of coral reefs. |
|---|---|
| AbstractList | The coral reefs have been considered as an essential component of the marine ecosystem as they help ecologically as well as toward the development of medicine related to the severe diseases such as HIV infections, heart disease, etc. The Coral bleaching phenomenon has been found as the main cause that increases the worldwide dying out risk of coral reefs. The Artificial Intelligence (AI) based approach can become an essential way of early detection of coral reefs bleaching. This work has proposed a Deep Convolution Autoencoder (DCAE) based model to detect the bleaching of the coral reefs. The Proposed DCAE model has been utilized to extract the deep feature image from the underwater image of coral reefs, which can be further utilize for the bleaching detection. The Kaggle repository of coral reef health dataset comprising the underwater images of healthy corals and bleached corals have been taken for the experimention. The proposed DCAE approach has achieved an accuracy of 76.60%, sensitivity of 80%, precision of 73.46%, and F1-Score of 76.59% in detecting the bleaching of coral reefs. |
| Author | Gautam, Neeraj Kumar Pati, Umesh C. Mishra, Mayank |
| Author_xml | – sequence: 1 givenname: Neeraj Kumar surname: Gautam fullname: Gautam, Neeraj Kumar email: gautamneeraj1012@gmail.com organization: NIT Rourkela,Department of ECE,Rourkela,India – sequence: 2 givenname: Mayank surname: Mishra fullname: Mishra, Mayank email: mmishra1208@gmail.com organization: NIT Rourkela,Department of ECE,Rourkela,India – sequence: 3 givenname: Umesh C. surname: Pati fullname: Pati, Umesh C. email: ucpati@nitrkl.ac.in organization: NIT Rourkela,Department of ECE,Rourkela,India |
| BookMark | eNo1kNlKxEAQRVtRcBzzB4L9A4nVS3p5jHEbGFFGfR66k4pGYmfIIvj3toxCwT3cU9RDnZKj0Ack5IJBxhjYy2L1_KSYZizjwGXGwGhQCg5IYrU1Ioc4KpeHZMGVhDTXypyQZBw_AEDwaIVckM1Vh656b8MbvcYJq6ntA20DLfvBdXSD2NB53FvcxTZ89d38uxRtMU89hqqvcaDejVjTh8jdGTluXDdi8pdL8np781Lep-vHu1VZrNOWgZpSgTkqYNZjLqvKeW4QwfO6ccag0b721nrXSIXSIMhIFiopGq3yxhruxJKc7--2iLjdDe2nG763_28QP42FVGA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/AISP61711.2024.10870660 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350350654 |
| EISSN | 2640-5768 |
| EndPage | 05 |
| ExternalDocumentID | 10870660 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i106t-3e5e6019be54ccab28ee0b2dfa88e87bdb99baf46e48e04af490c43f765f982a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446270200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Feb 26 09:43:36 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i106t-3e5e6019be54ccab28ee0b2dfa88e87bdb99baf46e48e04af490c43f765f982a3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10870660 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-26 |
| PublicationDateYYYYMMDD | 2024-10-26 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | The ... CSI International Symposium on Artificial Intelligence & Signal Processing (Online) |
| PublicationTitleAbbrev | AISP |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203534 |
| Score | 1.8872377 |
| Snippet | The coral reefs have been considered as an essential component of the marine ecosystem as they help ecologically as well as toward the development of medicine... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 01 |
| SubjectTerms | Accuracy Artificial intelligence Autoencoder Autoencoders Biological system modeling Bleached Coral Reefs Bleaching Classification Convolution Convolutional neural networks Coral reefs Deep CNN Diseases Feature extraction Marine vegetation |
| Title | Bleaching Detection in Coral Reef using Deep Convolutional Autoencoder based Model |
| URI | https://ieeexplore.ieee.org/document/10870660 |
| WOSCitedRecordID | wos001446270200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawMhEJU29NBT-pHSbzz0uqlR19Vjmja0lxDSFnILuo4QCJuQ7ub3d9xsUnrooZdFFGVx1GHG93yEPGAEEJRzWcJsTN1ILRKbA8OPNQJdvrbM12IT2Wikp1MzbsjqNRcGAGrwGXRjsb7L98u8iqky3OHxVk5hhH6YZWpL1tonVARnIhWywXD1mHnsv72P0UH3YhjIZXfX-5eOSu1Ghu1__sAJ6fwQ8uh472pOyQEUZ6S9U2SgzQY9J5OnRYOOpM9Q1iirgs4LOog8fDoBCDQC3WMrrLC22DQrD1v7VbmMr1p6HDD6Nk-jTtqiQz6HLx-D16RRTUjmGN6ViYAUMMoyDlKJ5nFcAzDHfbBag86cd8Y4G6QCqYFJLBmWSxEylQajuRUXpFUsC7gkVKYGmMoFBK9lD3DRGZ4KE4TPrbKSX5FOnKPZavswxmw3Pdd_1N-Q42iJePRzdUta5bqCO3KUb8r51_q-Nuc3j42hrw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEA2lLbQn-2Hpd3PodW1MsmtytLai1IpYC94k2UxAkFXs6u_vZF0tPfTQyxISdlkyCY83eS9DyCMyAJ9Y24iYCakbqURkUmD4MFog5CvDXFFsotHvq_FYD0qzeuGFAYBCfAa10CzO8t08XYVUGe7wcCqXIEM_iCUSn41da5dSEZyJWMhSxVVn-qnZ_RggRNcDEeSytn3_VyWVAkjalX_-wgmp_ljy6GAHNqdkD7IzUtnWZKDlFj0nw-dZqY-kL5AXOquMTjPaCk58OgTwNEjdwygssDdbl2sPR5urfB7utXT4wYBujoZKabMq-Wy_jlqdqKybEE2R4OWRgBiQZ2kLscQAWa4AmOXOG6VANayzWlvjZQJSAZPY0iyVwjeS2GvFjbgg-9k8g0tCZayBJakA75SsAy47zWOhvXCpSYzkV6Qa5miy2FyNMdlOz_Uf_Q_kqDN670163f7bDTkOUQlAwJNbsp8vV3BHDtN1Pv1a3heh_QYm0aT2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+CSI+International+Symposium+on+Artificial+Intelligence+%26+Signal+Processing+%28Online%29&rft.atitle=Bleaching+Detection+in+Coral+Reef+using+Deep+Convolutional+Autoencoder+based+Model&rft.au=Gautam%2C+Neeraj+Kumar&rft.au=Mishra%2C+Mayank&rft.au=Pati%2C+Umesh+C.&rft.date=2024-10-26&rft.pub=IEEE&rft.eissn=2640-5768&rft.spage=01&rft.epage=05&rft_id=info:doi/10.1109%2FAISP61711.2024.10870660&rft.externalDocID=10870660 |