An Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization Algorithm with Its Application in PID Parameter Optimization

To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO) algorithm based on stochastic balancing factor and Dimension-by-dimension Centroid Opposition-Based Learning (DCOBL) strategy is proposed. Wil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 8th International Symposium on Computer Science and Intelligent Control (ISCSIC) s. 367 - 371
Hlavní autoři: Chen, Dongning, Du, Xinwei, Wang, Haowen, Xian, Qinggui, Sha, Jianhao, Yao, Chengyu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.09.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO) algorithm based on stochastic balancing factor and Dimension-by-dimension Centroid Opposition-Based Learning (DCOBL) strategy is proposed. Wilcoxon test is introduced to statistically analyze the data of six classical benchmark functions. Compared with several other optimization algorithms, the proposed IHAOPIO algorithm has better optimization capability in accuracy. The improved algorithm is used to the PID parameter optimization of one electro-hydraulic position servo system and achieves good control effect.
AbstractList To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO) algorithm based on stochastic balancing factor and Dimension-by-dimension Centroid Opposition-Based Learning (DCOBL) strategy is proposed. Wilcoxon test is introduced to statistically analyze the data of six classical benchmark functions. Compared with several other optimization algorithms, the proposed IHAOPIO algorithm has better optimization capability in accuracy. The improved algorithm is used to the PID parameter optimization of one electro-hydraulic position servo system and achieves good control effect.
Author Wang, Haowen
Sha, Jianhao
Xian, Qinggui
Du, Xinwei
Chen, Dongning
Yao, Chengyu
Author_xml – sequence: 1
  givenname: Dongning
  surname: Chen
  fullname: Chen, Dongning
  email: dnchen@ysu.edu.cn
  organization: Yanshan University,School of Mechanical Engineering,Qinhuangdao,China
– sequence: 2
  givenname: Xinwei
  surname: Du
  fullname: Du, Xinwei
  email: 718728262@qq.com
  organization: Yanshan University,School of Mechanical Engineering,Qinhuangdao,China
– sequence: 3
  givenname: Haowen
  surname: Wang
  fullname: Wang, Haowen
  email: 793364395@qq.com
  organization: Yanshan University,School of Mechanical Engineering,Qinhuangdao,China
– sequence: 4
  givenname: Qinggui
  surname: Xian
  fullname: Xian, Qinggui
  email: 2768496552@qq.com
  organization: Yanshan University,School of Mechanical Engineering,Qinhuangdao,China
– sequence: 5
  givenname: Jianhao
  surname: Sha
  fullname: Sha, Jianhao
  email: 2826945663@qq.com
  organization: Yanshan University,School of Mechanical Engineering,Qinhuangdao,China
– sequence: 6
  givenname: Chengyu
  surname: Yao
  fullname: Yao, Chengyu
  email: chyyao@ysu.edu.cn
  organization: Yanshan University,Hebei Key Laboratory of Industrial Computer Control Engineering,Qinhuangdao,China
BookMark eNpNkL9OwzAYxI0EA5S-AUJ-gRQ7dpx4jMKfWqrUSIW5-pI45ZMSJzgGVDbenEjtwHI33N1vuBty6QZnCbnnbMU50w9mV-xMoWSs01XMYrlijGXxBVnqVGciYSJjcaauyW_uqOlHP3zZhq6PlceG5h-f2AHdjgF7_LGegmtoiQc7uMi4aUQ_d88pBBwczbvD4DG89_R7VmrCRPNx7LA-xehoaR5pCR56G2bg__EtuWqhm-zy7Avy9vz0WqyjzfbFFPkmQs5UiHgqMmttIkBqBQoqWSmeWKhbW0mIW6VqmUleNWlVg9Ia2qbmOp2NKWigFQtyd-LijNmPHnvwx_38FZdKafEHZJhhqg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCSIC64297.2024.00082
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350380286
EndPage 371
ExternalDocumentID 10914669
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i106t-1738eee53a496a6ab4b615eacfeb4a2f66c4841bd7bca699afdc197afd06adaf3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001461762200073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Mar 19 05:40:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-1738eee53a496a6ab4b615eacfeb4a2f66c4841bd7bca699afdc197afd06adaf3
PageCount 5
ParticipantIDs ieee_primary_10914669
PublicationCentury 2000
PublicationDate 2024-Sept.-6
PublicationDateYYYYMMDD 2024-09-06
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-6
  day: 06
PublicationDecade 2020
PublicationTitle 2024 8th International Symposium on Computer Science and Intelligent Control (ISCSIC)
PublicationTitleAbbrev ISCSIC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8820136
Snippet To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO)...
SourceID ieee
SourceType Publisher
StartPage 367
SubjectTerms Accuracy
Aquila Optimizer
Benchmark testing
Centroid Opposition-based Learning
Computer science
Intelligent control
Optimization
PID parameter optimization
Pigeon-inspired Optimization
Servomotors
Title An Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization Algorithm with Its Application in PID Parameter Optimization
URI https://ieeexplore.ieee.org/document/10914669
WOSCitedRecordID wos001461762200073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCdu8eBpfsz4HQ5e69aWQTk202W9zCbTZLflUWA22ZhunYne_M-FtnNePHiC8CAEXoDHe-_3HkK3yhe-lZKdzZAoj_gq8oTU1AOmpSCh4rpbJZtgo1E0mfC0BquXWBilVOl8pu5ctbTly2W2caqyjgtiSSjlDdRgjFZgrRr1a0mdZNwfJ30rUHNmP36BC4vdLQPs7dKmlK_GoPXP-Q5Re4e_w-nPy3KE9pQ5Rq1tAgZcn8cT9BUbXGkFlMTDDwe-wvHbJp8DfrRXwSL_tL3BSJzmM7U0XmKcXd32raklV3A8ny1XefGywE4pi5NijeOdWRvnBqfJPU7BuXG56X8PbqPnwcNTf-jVORW83H7-Cs9nYWTX2QuBcAoUBBFWprG3r1aCQKApzUhEfCGZyIByDlpmPme26FKQoMNT1DRLo84QDgJgXIPKpOrZEUSEvoSMkywAriMO56jttnT6WoXNmG538-KP9kt04LhWOnDRK9QsVht1jfaz9yJfr25KZn8DpByxfQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6TfQ0P2b8loPXurVltByb6bLGOZtsJrstjwKzydbq1pnozf9caKvz4sEThAch8AI83nu_9xC6lja3tZRsbIZEWsSWvsWFohZ4SnDiSqZaZbIJbzDwx2MWVWD1AgsjpSycz-SNqRa2fJHFK6Mqa5ogloRStom22oQ4rRKuVeF-NbEZDjvDsKNFaubpr59jAmO3ihB768QpxbvRrf9zxj3UWCPwcPTztuyjDZkeoPp3CgZcnchD9BmkuNQLSIF77wZ-hYPXVTID_Kgvg3nyoXtDKnCUTGWWWmFqLOu6b0Ut-IKD2TRbJPnzHBu1LA7zJQ7Whm2cpDgKb3EExpHLTP97cAM9de9GnZ5VZVWwEv39yy3bc329zrYLhFGgwAnXUo2-f5XkBBxFaUx8YnPh8RgoY6BEbDNPFy0KApR7hGpplspjhB0HPKZAxkK29QjCXVtAzEjsAFM-gxPUMFs6eSkDZ0y-d_P0j_YrtNMbPfQn_XBwf4Z2DQcLdy56jmr5YiUv0Hb8lifLxWXB-C8EK7TE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+8th+International+Symposium+on+Computer+Science+and+Intelligent+Control+%28ISCSIC%29&rft.atitle=An+Improved+Hybrid+Aquila+Optimizer+and+Pigeon-Inspired+Optimization+Algorithm+with+Its+Application+in+PID+Parameter+Optimization&rft.au=Chen%2C+Dongning&rft.au=Du%2C+Xinwei&rft.au=Wang%2C+Haowen&rft.au=Xian%2C+Qinggui&rft.date=2024-09-06&rft.pub=IEEE&rft.spage=367&rft.epage=371&rft_id=info:doi/10.1109%2FISCSIC64297.2024.00082&rft.externalDocID=10914669