Multi-platform multi-target tracking fusion via covariance intersection: using fuzzy optimised modified Kalman filters with measurement noise covariance estimation

Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates within platform centric nodes via covariance intersection. The approach presents a method of deconstructing the target model into a nonlinear el...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications s. 185 - 194
Hlavní autoři: Wren, T.J, Mahmood, A
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Stevenage IET 2008
Témata:
ISBN:0863419100, 9780863419102
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Presented in this paper is a detailed novel approach to tracking multiple moving targets from multiple moving platforms and fusing the individual estimates within platform centric nodes via covariance intersection. The approach presents a method of deconstructing the target model into a nonlinear element and a Kalman filter, modelling the target position and velocity vectors of the targets. The method avoids the increased complexity of using extended Kalman filters. The model state noise covariance is restructured by considering the source of the noise within the simplified imposed model and the measurement noise covariance is estimated from a single coefficient optimized moving average filter. The filter coefficient is optimally determined by the minimization of the variance of the Frobenius norm of the current estimated measurement covariance matrix, via a fuzzy logic feedback structure.
ISBN:0863419100
9780863419102
DOI:10.1049/ic:20080071