A fast learning algorithm of neural network for the training and recognition of the phonemes
In order to improve the training speed of multilayer feedforward neural networks, we proposed and explored fast backpropagation (BP) algorithms by introducing the hybrid global optimization conjugate gradient algorithm for the dynamic learning rate. This was to overcome the BP learning problem which...
Uloženo v:
| Vydáno v: | ISIMP 2004 : proceedings of 2004 International Symposium on Intelligent Multimedia, Video, and Speech Processing : October 20-22, 2004, Hong Kong s. 318 - 321 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2004
|
| Témata: | |
| ISBN: | 9780780386877, 0780386876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In order to improve the training speed of multilayer feedforward neural networks, we proposed and explored fast backpropagation (BP) algorithms by introducing the hybrid global optimization conjugate gradient algorithm for the dynamic learning rate. This was to overcome the BP learning problem which caused plunging into local minima or slow convergence. Our algorithm is of a higher recognition rate than that of the Polak-Ribieve conjugate gradient and conventional BP algorithms. It showed less training time, less complication and stronger robustness than the Fletcher-Reeves conjugate gradient and conventional BP algorithms for real speech data. |
|---|---|
| ISBN: | 9780780386877 0780386876 |
| DOI: | 10.1109/ISIMP.2004.1434064 |

