Towards Unsupervised Subject-Independent Speech-Based Relapse Detection in Patients with Psychosis using Variational Autoencoders
Generative models, such as Variational Autoen-coders, are being increasingly utilized for various acoustic modeling tasks, such as anomaly detection from audio signals. Motivated by this, in this work we propose a Convolutional Variational Autoencoder (CVAE), in order to detect and predict the appea...
Uložené v:
| Vydané v: | 2022 30th European Signal Processing Conference (EUSIPCO) s. 175 - 179 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
EUSIPCO
29.08.2022
|
| Predmet: | |
| ISSN: | 2076-1465 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Generative models, such as Variational Autoen-coders, are being increasingly utilized for various acoustic modeling tasks, such as anomaly detection from audio signals. Motivated by this, in this work we propose a Convolutional Variational Autoencoder (CVAE), in order to detect and predict the appearance of relapses in patients with psychotic disorders, such as schizophrenia and bipolar disorder. The proposed system utilizes speech segments of patients, isolated from interviews conducted with their clinicians containing spontaneous speech, and represented as log-mel spectrograms. The results from the analysis of each segment are then aggregated in a per-interview basis. We explore the performance of our system in both a personalized and a universal (patient-independent) setup. Evaluation of our method in data from 13 patients and 375 interviews, with a total duration of 30509 sec of isolated speech, indicate that the CVAE achieves similar results to a Convolutional Autoencoder (CAE) baseline in a personalized setup. Further-more, the proposed model significantly outperforms the CAE baseline when considering a universal relapse detection setup. |
|---|---|
| AbstractList | Generative models, such as Variational Autoen-coders, are being increasingly utilized for various acoustic modeling tasks, such as anomaly detection from audio signals. Motivated by this, in this work we propose a Convolutional Variational Autoencoder (CVAE), in order to detect and predict the appearance of relapses in patients with psychotic disorders, such as schizophrenia and bipolar disorder. The proposed system utilizes speech segments of patients, isolated from interviews conducted with their clinicians containing spontaneous speech, and represented as log-mel spectrograms. The results from the analysis of each segment are then aggregated in a per-interview basis. We explore the performance of our system in both a personalized and a universal (patient-independent) setup. Evaluation of our method in data from 13 patients and 375 interviews, with a total duration of 30509 sec of isolated speech, indicate that the CVAE achieves similar results to a Convolutional Autoencoder (CAE) baseline in a personalized setup. Further-more, the proposed model significantly outperforms the CAE baseline when considering a universal relapse detection setup. |
| Author | Zlatintsi, A. Kalisperakis, E. Filntisis, P. P. Smyrnis, N. Maragos, P. Garoufis, C. Garyfalli, V. Lazaridi, M. Karantinos, T. Efthymiou, N. |
| Author_xml | – sequence: 1 givenname: C. surname: Garoufis fullname: Garoufis, C. email: cgaroufis@mail.ntua.gr organization: School of ECE, National Technical University of Athens,Athens,Greece,15773 – sequence: 2 givenname: A. surname: Zlatintsi fullname: Zlatintsi, A. email: nzlat@cs.ntua.gr organization: School of ECE, National Technical University of Athens,Athens,Greece,15773 – sequence: 3 givenname: P. P. surname: Filntisis fullname: Filntisis, P. P. email: filby@central.ntua.gr organization: School of ECE, National Technical University of Athens,Athens,Greece,15773 – sequence: 4 givenname: N. surname: Efthymiou fullname: Efthymiou, N. email: nefthymiou@central.ntua.gr organization: School of ECE, National Technical University of Athens,Athens,Greece,15773 – sequence: 5 givenname: E. surname: Kalisperakis fullname: Kalisperakis, E. organization: Laboratory of Cognitive Neuroscience, University Mental Health Research Institute,Athens,Greece – sequence: 6 givenname: T. surname: Karantinos fullname: Karantinos, T. organization: Laboratory of Cognitive Neuroscience, University Mental Health Research Institute,Athens,Greece – sequence: 7 givenname: V. surname: Garyfalli fullname: Garyfalli, V. organization: Laboratory of Cognitive Neuroscience, University Mental Health Research Institute,Athens,Greece – sequence: 8 givenname: M. surname: Lazaridi fullname: Lazaridi, M. organization: Laboratory of Cognitive Neuroscience, University Mental Health Research Institute,Athens,Greece – sequence: 9 givenname: N. surname: Smyrnis fullname: Smyrnis, N. email: smyrnis@med.uoa.gr organization: Laboratory of Cognitive Neuroscience, University Mental Health Research Institute,Athens,Greece – sequence: 10 givenname: P. surname: Maragos fullname: Maragos, P. email: maragos@cs.ntua.gr organization: School of ECE, National Technical University of Athens,Athens,Greece,15773 |
| BookMark | eNot0MFPwjAUBvBqNFGQv8BL43342q7rekREJSGBCHglZX2TGuyWtZNw9D93RC7v-w6_fIfXI1e-8kjIA4MhF5rpx8l6OV2M51KCFkMOnA-1Bp2n7IL0NORcaQVaXZJbDipLWJrJGzIIwW2B55ArBtkt-V1VB9PYQNc-tDU2Py6gpct2-4VFTKbeYo3d8ZEua8RilzyZE3jHvakD0meMnXOVp87ThYmuk4EeXNzRRTgWuyq4QNvg_Cf9MI0zJ2r2dNTGCn1RWWzCHbkuzT7g4Jx9sn6ZrMZvyWz-Oh2PZoljIGNiclQi57w0lmthFCtBgTFapFuJqS21zIWxwLqWQpFZ4FJAplIJjAmdStEn9_-7DhE3deO-TXPcnD8m_gAjk2XI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/EUSIPCO55093.2022.9909841 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9082797097 9789082797091 |
| EISSN | 2076-1465 |
| EndPage | 179 |
| ExternalDocumentID | 9909841 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i105t-a8e73822fad293a71f070aa934b5e4df9583ad01df940c6d02530674501139453 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918827600036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i105t-a8e73822fad293a71f070aa934b5e4df9583ad01df940c6d02530674501139453 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9909841 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug.-29 |
| PublicationDateYYYYMMDD | 2022-08-29 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 30th European Signal Processing Conference (EUSIPCO) |
| PublicationTitleAbbrev | EUSIPCO |
| PublicationYear | 2022 |
| Publisher | EUSIPCO |
| Publisher_xml | – name: EUSIPCO |
| SSID | ssib028087106 ssib025355106 |
| Score | 1.8272555 |
| Snippet | Generative models, such as Variational Autoen-coders, are being increasingly utilized for various acoustic modeling tasks, such as anomaly detection from audio... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 175 |
| SubjectTerms | Aggregates Anomaly Detection Convolution Europe Interviews Mental disorders Predictive models Protocols Psychotic Disorders Relapse Prediction Spontaneous Speech Vari-ational Autoencoder |
| Title | Towards Unsupervised Subject-Independent Speech-Based Relapse Detection in Patients with Psychosis using Variational Autoencoders |
| URI | https://ieeexplore.ieee.org/document/9909841 |
| WOSCitedRecordID | wos000918827600036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YERt0lsx_EIpRWVUInUFnWr3NiBLmlUJ-z8c85JKCCxsFmWFUV31ncPf3eH0A2NNE2ZnxKhIERhNPWIjCglXLMV56EK_LTS9JOYTKLFQsYtdLurhTHGVOQz03PL6i1fb5LSpcr6gJwyclXqe0KIulbr6-4EHAznjxfDIPIgFPDCus9oQKUv-8P5dBwPnsEnlxQiwyDoNR_8NVmlMiyjw__90hHqflfo4Xhne45Ry2Qd9DGrOLAWzzNb5g4ErNEYoMHlWsh4N_C2wNPcmOSN3Ct3wPHhcmvwgykqXlaG1xmO636rFrtELa5h0q4tdjz5V_wCEXaTRcR3ZbFx3TAdI7qL5qPhbPBImhELZA2OVUFUZAQFHyFVGuy-En4KEKCUpKApw3QqeUSV9nxYMS8JtZMz2DfGARaoZJyeoHa2ycwpwl6gZMI5uH9MMg1Rd7IyoVj5Uodae9qcoY4T3zKvu2gsG8md_719gQ6chlz2NpCXqF1sS3OF9pP3Ym2315XqPwG406_A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqggQToBbxxgMjaRM_kniE0qoVpURqi7pVbuxAljRqEnb-OeckFJBY2CzLiqI767uHv7tD6Ib6ikbMiSxPQojCaGRbwqfU4oqtOHclcaJS02NvMvEXCxE00O22FkZrXZLPdMcsy7d8tQ4LkyrrAnIK31Sp73DGiFNVa33dHsLBdP54MyS-DcGA7VadRgkVjuj259NR0HsGr1xQiA0J6dSf_DVbpTQtg4P__dQhan_X6OFga32OUEMnLfQxK1mwGZ4nWZEaGMi0wgAOJttijbYjb3M8TbUO36x7aQ4YRlyaafyg85KZleA4wUHVcTXDJlWLK6DM4gwbpvwrfoEYu84j4rsiX5t-mIYT3UbzQX_WG1r1kAUrBtcqt6SvPQpeQiQVWH7pORGAgJSCgq40U5HgPpXKdmDF7NBVRs5g4RgHYKCCcXqMmsk60ScI20SKkHNwAJlgCuLucKVdb-UI5SplK32KWkZ8y7Tqo7GsJXf29_Y12hvOnsbL8WjyeI72jbZMLpeIC9TMN4W-RLvhex5nm6vyGnwCB1CzBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+30th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Towards+Unsupervised+Subject-Independent+Speech-Based+Relapse+Detection+in+Patients+with+Psychosis+using+Variational+Autoencoders&rft.au=Garoufis%2C+C.&rft.au=Zlatintsi%2C+A.&rft.au=Filntisis%2C+P.+P.&rft.au=Efthymiou%2C+N.&rft.date=2022-08-29&rft.pub=EUSIPCO&rft.eissn=2076-1465&rft.spage=175&rft.epage=179&rft_id=info:doi/10.23919%2FEUSIPCO55093.2022.9909841&rft.externalDocID=9909841 |