A novel intrusion detection method based on clonal selection clustering algorithm
This paper presents a novel unsupervised fuzzy clustering method based on clonal selection algorithm for anomaly detection in order to solve the problem of fuzzy k-means algorithm which is much more sensitive to the initialization and easy to fall into local optimization. This method can quickly obt...
Uloženo v:
| Vydáno v: | 2005 International Conference on Machine Learning and Cybernetics Ročník 6; s. 3905 - 3910 Vol. 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2005
|
| Témata: | |
| ISBN: | 0780390911, 9780780390911 |
| ISSN: | 2160-133X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!

