Learning Similarity-Preserving Representations of Brain Structure-Function Coupling
Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some of the brain's organizing principles at the system level. In this direction, we develop a supervised graph representation learning frame...
Gespeichert in:
| Veröffentlicht in: | 2022 30th European Signal Processing Conference (EUSIPCO) S. 922 - 926 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
EUSIPCO
29.08.2022
|
| Schlagworte: | |
| ISSN: | 2076-1465 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some of the brain's organizing principles at the system level. In this direction, we develop a supervised graph representation learning framework to model the relationship between brain structural connectivity (SC) and functional connectivity (FC) via a graph encoder-decoder system. Specifically, we propose a Siamese network architecture equipped with graph convolutional encoders to learn graph (i.e., subject)-level embeddings that preserve application-dependent similarity measures between brain networks. This way, we effectively increase the number of training samples and bring in the flexibility to incorporate additional prior information via the prescribed target graph-level distance. While information on the brain structure-function coupling is implicitly distilled via reconstruction of brain FC from SC, our model also manages to learn representations that preserve the similarity between input graphs. The superior discriminative power of the learnt representations is demonstrated in downstream tasks including subject classification and visualization. All in all, this work advocates the prospect of leveraging learnt graph-level, similarity-preserving embeddings for brain network analysis, by bringing to bear standard tools of metric data analysis. |
|---|---|
| AbstractList | Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some of the brain's organizing principles at the system level. In this direction, we develop a supervised graph representation learning framework to model the relationship between brain structural connectivity (SC) and functional connectivity (FC) via a graph encoder-decoder system. Specifically, we propose a Siamese network architecture equipped with graph convolutional encoders to learn graph (i.e., subject)-level embeddings that preserve application-dependent similarity measures between brain networks. This way, we effectively increase the number of training samples and bring in the flexibility to incorporate additional prior information via the prescribed target graph-level distance. While information on the brain structure-function coupling is implicitly distilled via reconstruction of brain FC from SC, our model also manages to learn representations that preserve the similarity between input graphs. The superior discriminative power of the learnt representations is demonstrated in downstream tasks including subject classification and visualization. All in all, this work advocates the prospect of leveraging learnt graph-level, similarity-preserving embeddings for brain network analysis, by bringing to bear standard tools of metric data analysis. |
| Author | Li, Yang Mateos, Gonzalo |
| Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang email: yli131@ur.rochester.edu organization: University of Rochester,Dept. of Electrical and Computer Engineering,Rochester,NY,USA – sequence: 2 givenname: Gonzalo surname: Mateos fullname: Mateos, Gonzalo email: gmateosb@ece.rochester.edu organization: University of Rochester,Dept. of Electrical and Computer Engineering,Rochester,NY,USA |
| BookMark | eNotkEFrAjEUhNPSQtX6C3pZel_7kphs3rFdtBUWlG49S9y8lIBmJbtb8N-3Uk_DzMfMYcbsLraRGHvmMBMSOb4stvVqU66VApQzAULMEAGV1jdsjGBEgQVgcctGAgqd87lWD2zadWEPwoApOOgRqyuyKYb4ndXhGA42hf6cbxJ1lH4u6SedLib2tg9t7LLWZ2_JhpjVfRqafkiUL4fYXGBWtsPp8Fd6ZPfeHjqaXnXCtsvFV_mRV-v3Vfla5YGD6nPlkObOIxrjfLN3yhLKwjpv9N4raea84RaAHJdGIXJotLNolNegLUcnJ-zpfzcQ0e6UwtGm8-76gfwFQqdWPA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/EUSIPCO55093.2022.9909566 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9082797097 9789082797091 |
| EISSN | 2076-1465 |
| EndPage | 926 |
| ExternalDocumentID | 9909566 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: CCF-1750428,CCF-1934962,ECCS-1809356 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i105t-5d9e4df9988dfcbd5ae937adf86bf53841c1a00ed13859910c6da985f606a19d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918827600182&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i105t-5d9e4df9988dfcbd5ae937adf86bf53841c1a00ed13859910c6da985f606a19d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9909566 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug.-29 |
| PublicationDateYYYYMMDD | 2022-08-29 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 30th European Signal Processing Conference (EUSIPCO) |
| PublicationTitleAbbrev | EUSIPCO |
| PublicationYear | 2022 |
| Publisher | EUSIPCO |
| Publisher_xml | – name: EUSIPCO |
| SSID | ssib028087106 ssib025355106 |
| Score | 1.8053551 |
| Snippet | Advances in graph signal processing for network neuroscience offer a unique pathway to integrate brain structure and function, with the goal of revealing some... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 922 |
| SubjectTerms | Brain connectomics Convolution Couplings graph convolutional network graph representation learning Network analyzers Pipelines Representation learning Siamese network Training Training data |
| Title | Learning Similarity-Preserving Representations of Brain Structure-Function Coupling |
| URI | https://ieeexplore.ieee.org/document/9909566 |
| WOSCitedRecordID | wos000918827600182&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4KwMjbh3HduyVqhUspSJU6lY5flQZSFBfv59zGgpILGyRE1nJxbr7Pvu-O4TuaeI9i3ODPSMWM-ccljkTWEnJQ9aFJ6mtm02kk4mcz9W0hR4OWhh4uk4-c_1wWZ_l28psw1bZADwnwHnRRu00Tfdara-1QzkEzh8nhlQSoAJE7OuM0kTFajCaZc_T4QtgcpUAM6S030z4q7NKHVjGJ_97pVPU-1boRdND7DlDLVd2UdYUS11GWfFeAGUFhI1DjkXwBzD6Wme9NmKjch1VPnoMHSKirC4iu105PIYwF25Gw2obtLrLHpqNR2_DJ9w0TcAFQKUN5lY5Zj2wKGm9yS3XDhCItl6K3IN3Y7GJNSHOxonkAA6JEVYryT0wGR0rm5yjTlmV7gJFjHnhmKCKQyDPrdFG5KlkSa4tcSrVl6gbDLL42NfFWDS2uPp7-BodB5uH_ViqblAHvszdoiOz2xTr1V39Mz8B2eag8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYIJUIt4k4ERt4ljJ_ZK1aoVpVSklbpVjh9VBhLUB7-fcxoKSCxskRNZycW6-z77vjuE7kloLQ1ShS31NabGGMxTGmHBOXNZF9aPddlsIh6N-GwmxjX0sNPCwNNl8plpucvyLF8XauO2ytrgOQHOR3ton1FKgq1a62v1EAah88eZIeE-kAE_2lYaJaEIRLs7TQbjzgugchECNySkVU35q7dKGVp6x_97qRPU_NboeeNd9DlFNZM3UFKVS114SfaWAWkFjI1dloXzCDD6Wua9VnKjfOUV1nt0PSK8pCwju1ka3INA5256nWLj1LqLJpr2upNOH1dtE3AGYGmNmRaGags8imurUs2kAQwiteVRasG_0UAF0veNDkLOAB76KtJScGaBy8hA6PAM1fMiN-fIo9RGhkZEMAjlqVZSRWnMaZhK7RsRywvUcAaZv28rY8wrW1z-PXyHDvuT5-F8OBg9XaEjZ3-3O0vENarDV5obdKA-1tlqeVv-2E9nLqQ6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+30th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Learning+Similarity-Preserving+Representations+of+Brain+Structure-Function+Coupling&rft.au=Li%2C+Yang&rft.au=Mateos%2C+Gonzalo&rft.date=2022-08-29&rft.pub=EUSIPCO&rft.eissn=2076-1465&rft.spage=922&rft.epage=926&rft_id=info:doi/10.23919%2FEUSIPCO55093.2022.9909566&rft.externalDocID=9909566 |