Interacting T-S Fuzzy Model Particle Filter
To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy s...
Gespeichert in:
| Veröffentlicht in: | 2019 22th International Conference on Information Fusion (FUSION) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
ISIF - International Society of Information Fusion
01.07.2019
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy sets, and the probability transition model between fuzzy sets is derived based on the closeness degree between fuzzy sets, which is used to estimate the interacting transition probabilities between the models. Furthermore, to identify the premise parameters of T-S fuzzy model, a fuzzy C- regression clustering method is proposed, and a particle filtering algorithm based on a modified extended forgetting recursive least squares estimation method (EFRLS) is used to identify the consequence parameters. Finally, the experimental results show that the tracking performance of the proposed algorithms is better than that of the traditional interacting multiple model (IMM), interacting multiple model unscented Kalman filter (IMMUKF), interacting multiple model particle filter (IMMPF) and interacting multiple model Rao-Blackwellized particle filter (IMMRBPF). |
|---|---|
| AbstractList | To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy sets, and the probability transition model between fuzzy sets is derived based on the closeness degree between fuzzy sets, which is used to estimate the interacting transition probabilities between the models. Furthermore, to identify the premise parameters of T-S fuzzy model, a fuzzy C- regression clustering method is proposed, and a particle filtering algorithm based on a modified extended forgetting recursive least squares estimation method (EFRLS) is used to identify the consequence parameters. Finally, the experimental results show that the tracking performance of the proposed algorithms is better than that of the traditional interacting multiple model (IMM), interacting multiple model unscented Kalman filter (IMMUKF), interacting multiple model particle filter (IMMPF) and interacting multiple model Rao-Blackwellized particle filter (IMMRBPF). |
| Author | Wang, Xiao-Li Xie, Wei-Xin Li, Liang-Qun |
| Author_xml | – sequence: 1 givenname: Liang-Qun surname: Li fullname: Li, Liang-Qun organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060 – sequence: 2 givenname: Xiao-Li surname: Wang fullname: Wang, Xiao-Li organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060 – sequence: 3 givenname: Wei-Xin surname: Xie fullname: Xie, Wei-Xin organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060 |
| BookMark | eNotj8tKAzEUQCPoQmu_wE1cy4w3j5tMllIcO1Ct0HZd8riRwDiVcVy0X69gV2dzOHBu2OVwGIixewG1VE64x3a36dZvWoHFWoJwtQMhpNQXbO5sA84ZjdI25po9dMNEo49TGT74ttrw9ud0OvLXQ6Kev_txKrEn3pb-z7plV9n33zQ_c8Z27fN2saxW65du8bSqigCcKm09OpODV6CCzw6TMWQCeRMRUCgkINVQbmIQmDyIYBBM0slFm73Kasbu_ruFiPZfY_n043F_XlC_4ZRAwQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/FUSION43075.2019.9011224 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9780996452786 0996452788 |
| EndPage | 6 |
| ExternalDocumentID | 9011224 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i105t-47a596fba303baf95d66e6bea6c505135e0e38ef8cb15da01b6506d4d9c7fa3f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567728800067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:13 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i105t-47a596fba303baf95d66e6bea6c505135e0e38ef8cb15da01b6506d4d9c7fa3f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9011224 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-July |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 22th International Conference on Information Fusion (FUSION) |
| PublicationTitleAbbrev | ICIF |
| PublicationYear | 2019 |
| Publisher | ISIF - International Society of Information Fusion |
| Publisher_xml | – name: ISIF - International Society of Information Fusion |
| Score | 1.6927804 |
| Snippet | To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Clustering algorithms Fuzzy C-regression clustering Fuzzy sets Heuristic algorithms Particle filter Particle filters Semantics T-S fuzzy model Uncertainty |
| Title | Interacting T-S Fuzzy Model Particle Filter |
| URI | https://ieeexplore.ieee.org/document/9011224 |
| WOSCitedRecordID | wos000567728800067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aIuJJpRXfRPBo2t1uHpuzuHiQUrCV3kqSSaQgW6mtYH-9ye5SEbx4G0IgTDJkJjPflwG49SgT7gWjxiZImY1SmmqKifbW5MJjlRp4eZKjUT6bqXEL7nZcGOdcBT5z_ShWtXxc2k1MlQ0iTTK4nDa0pZQ1V2sfbio0s0rVoJjG-4cFq-URs6X6zfxfjVMqv1Ec_m_FI-j9EPDIeOdajqHlyi7U2btIRChfyYQ-k2Kz3X6R2M3sjYwbEyDFIta_ezAtHib3j7TpdUAXIcJZUyY1V8IbHVyK0V5xFMIJ47SwIUZJM-4Sl-XO59akHHWSmhBaCWSorPQ689kJdMpl6U6BKJRMGCYTNYz_lTHluZece0SF4TUxPINuVHT-Xn9nMW90PP97-AIO4l7WCNVL6KxXG3cFe_ZzvfhYXVdn8A3xzIib |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfWk0opvI3g07W43j81ZXCrWUrCV3kqeUihbqa1gf73J7lIRvHgbAiFMMmQmM9-XAbh1hkfUMYKVjgwmOkhxLLGJpNMqZc4UqYHXHu_30_FYDGpwt-HCWGsL8JltBbGo5Zu5XoVUWTvQJL3L2YJtSkgnLtlau3BT4JlFLNrZKNxAxNstDagt0apm_GqdUniO7OB_ax5C84eChwYb53IENZs3oMzfBSpC_oaG-AVlq_X6C4V-ZjM0qIwAZdNQAW_CKHsY3ndx1e0AT32Ms8SESyqYU9I7FSWdoIYxy5SVTPsoJU6ojWySWpdqFVMjo1j54IoZYoTmTiYuOYZ6Ps_tCSBhOGGK8Eh0wo9lRDjqOKXOGGH8e6JzCo2g6OS9_NBiUul49vfwNex1h8-9Se-x_3QO-2FfS7zqBdSXi5W9hB39uZx-LK6K8_gGQayL4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+22th+International+Conference+on+Information+Fusion+%28FUSION%29&rft.atitle=Interacting+T-S+Fuzzy+Model+Particle+Filter&rft.au=Li%2C+Liang-Qun&rft.au=Wang%2C+Xiao-Li&rft.au=Xie%2C+Wei-Xin&rft.date=2019-07-01&rft.pub=ISIF+-+International+Society+of+Information+Fusion&rft.spage=1&rft.epage=6&rft_id=info:doi/10.23919%2FFUSION43075.2019.9011224&rft.externalDocID=9011224 |