Interacting T-S Fuzzy Model Particle Filter

To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy s...

Full description

Saved in:
Bibliographic Details
Published in:2019 22th International Conference on Information Fusion (FUSION) pp. 1 - 6
Main Authors: Li, Liang-Qun, Wang, Xiao-Li, Xie, Wei-Xin
Format: Conference Proceeding
Language:English
Published: ISIF - International Society of Information Fusion 01.07.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy sets, and the probability transition model between fuzzy sets is derived based on the closeness degree between fuzzy sets, which is used to estimate the interacting transition probabilities between the models. Furthermore, to identify the premise parameters of T-S fuzzy model, a fuzzy C- regression clustering method is proposed, and a particle filtering algorithm based on a modified extended forgetting recursive least squares estimation method (EFRLS) is used to identify the consequence parameters. Finally, the experimental results show that the tracking performance of the proposed algorithms is better than that of the traditional interacting multiple model (IMM), interacting multiple model unscented Kalman filter (IMMUKF), interacting multiple model particle filter (IMMPF) and interacting multiple model Rao-Blackwellized particle filter (IMMRBPF).
AbstractList To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed algorithm, a general interacting T-S fuzzy model framework is constructed. The target feature information is represented by multiple semantic fuzzy sets, and the probability transition model between fuzzy sets is derived based on the closeness degree between fuzzy sets, which is used to estimate the interacting transition probabilities between the models. Furthermore, to identify the premise parameters of T-S fuzzy model, a fuzzy C- regression clustering method is proposed, and a particle filtering algorithm based on a modified extended forgetting recursive least squares estimation method (EFRLS) is used to identify the consequence parameters. Finally, the experimental results show that the tracking performance of the proposed algorithms is better than that of the traditional interacting multiple model (IMM), interacting multiple model unscented Kalman filter (IMMUKF), interacting multiple model particle filter (IMMPF) and interacting multiple model Rao-Blackwellized particle filter (IMMRBPF).
Author Wang, Xiao-Li
Xie, Wei-Xin
Li, Liang-Qun
Author_xml – sequence: 1
  givenname: Liang-Qun
  surname: Li
  fullname: Li, Liang-Qun
  organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060
– sequence: 2
  givenname: Xiao-Li
  surname: Wang
  fullname: Wang, Xiao-Li
  organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060
– sequence: 3
  givenname: Wei-Xin
  surname: Xie
  fullname: Xie, Wei-Xin
  organization: ATR Key Laboratory, Shenzhen University,Shenzhen,P.R.China,518060
BookMark eNotj8tKAzEUQCPoQmu_wE1cy4w3j5tMllIcO1Ct0HZd8riRwDiVcVy0X69gV2dzOHBu2OVwGIixewG1VE64x3a36dZvWoHFWoJwtQMhpNQXbO5sA84ZjdI25po9dMNEo49TGT74ttrw9ud0OvLXQ6Kev_txKrEn3pb-z7plV9n33zQ_c8Z27fN2saxW65du8bSqigCcKm09OpODV6CCzw6TMWQCeRMRUCgkINVQbmIQmDyIYBBM0slFm73Kasbu_ruFiPZfY_n043F_XlC_4ZRAwQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/FUSION43075.2019.9011224
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780996452786
0996452788
EndPage 6
ExternalDocumentID 9011224
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i105t-47a596fba303baf95d66e6bea6c505135e0e38ef8cb15da01b6506d4d9c7fa3f3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567728800067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:13 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-47a596fba303baf95d66e6bea6c505135e0e38ef8cb15da01b6506d4d9c7fa3f3
PageCount 6
ParticipantIDs ieee_primary_9011224
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationTitle 2019 22th International Conference on Information Fusion (FUSION)
PublicationTitleAbbrev ICIF
PublicationYear 2019
Publisher ISIF - International Society of Information Fusion
Publisher_xml – name: ISIF - International Society of Information Fusion
Score 1.6927804
Snippet To the uncertainty modeling of nonlinear non-Gaussian dynamic system, a novel interacting T-S fuzzy model particle filter is proposed. In the proposed...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Clustering algorithms
Fuzzy C-regression clustering
Fuzzy sets
Heuristic algorithms
Particle filter
Particle filters
Semantics
T-S fuzzy model
Uncertainty
Title Interacting T-S Fuzzy Model Particle Filter
URI https://ieeexplore.ieee.org/document/9011224
WOSCitedRecordID wos000567728800067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-2IeKTyiZ-E8FHu7W0SZtnsfggo-Amexv5uMhAOpmt4P56c22ZCL74FkIg5HLJ_ZK73x3ArSOcjNoEIfrTlGjuj5RwsX-liMi_cbmwjQf_5SmdTrPFQhY9uNtxYRCxCT7DMTUbX75dm5q-yiZEk_Qmpw_9NE1brtY-3DTRzDKSk3xO90_itZZTzJYcd-N_FU5p7EZ--L8Zj2D0Q8Bjxc60HEMPyyG0v3dERChf2Sx4Znm93X4xqmb2xopOBVi-Iv_3COb5w-z-MehqHQQrj3CqIEkV90LSypsUrZzkVggUGpUwHqNEMUcSJrrM6IhbFUbaQythEytN6lTs4hMYlOsST4GFtk0aEwpUiRGhtB5iRWgzoxylLzuDIS10-d6ms1h2azz_u_sCDkiWbYTqJQyqTY1XsGc-q9XH5rrZg299aIdx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfWk0opvI3h0242bpM1ZXCrWUrCV3koeE1mQrdRWsL_eZHepCF68hUAImUwyXzLzzQBcu4CTUZsoRn-amOb-SAmX-FeKoP6Ny4UtPPgv_c5g0J1M5LAGN2suDCIWwWfYCs3Cl29nZhm-ytqBJulNzgZscsZuacnW2oarIp5ZUtlOx-EGYl5veYjakq1qxK_SKYXlSPf-N-c-NH8oeGS4Ni4HUMO8AeX_XaAi5K9kFD2TdLlafZFQz-yNDCslIGkWPOBNGKf3o7teVFU7iDKPcRYR6yjuxaSVNypaOcmtECg0KmE8SqEJxyBOdF2jKbcqptqDK2GZlabjVOKSQ6jnsxyPgMS2TBsTC1TMiFhaD7Io2q5RLiQwO4ZGWOj0vUxoMa3WePJ39yXs9EZP_Wn_YfB4CrtBrmW86hnUF_MlnsOW-VxkH_OLYj--AbyDirg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+22th+International+Conference+on+Information+Fusion+%28FUSION%29&rft.atitle=Interacting+T-S+Fuzzy+Model+Particle+Filter&rft.au=Li%2C+Liang-Qun&rft.au=Wang%2C+Xiao-Li&rft.au=Xie%2C+Wei-Xin&rft.date=2019-07-01&rft.pub=ISIF+-+International+Society+of+Information+Fusion&rft.spage=1&rft.epage=6&rft_id=info:doi/10.23919%2FFUSION43075.2019.9011224&rft.externalDocID=9011224