A constrained optimization evolutionary algorithm based on multiobjective optimization techniques

This paper presents a novel evolutionary algorithm for constrained optimization. During the evolutionary process, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual chosen from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2005 IEEE Congress on Evolutionary Computation Ročník 2; s. 1081 - 1087 Vol. 2
Hlavní autoři: Yong Wang, Zixing Cai
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2005
Témata:
ISBN:0780393635, 9780780393639
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a novel evolutionary algorithm for constrained optimization. During the evolutionary process, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual chosen from the offspring population. In addition, a model of population-based algorithm-generator and an infeasible solutions archiving and replacement mechanism are introduced. Furthermore, the simplex crossover is used as a recombination operator to enrich the exploration and exploitation abilities of the approach proposed. The new approach is tested on thirteen well-known benchmark functions, and the empirical evidences suggest that it is robust, efficient and generic when handling linear/nonlinear equality/inequality constraints. Compared with some other state-of-the-art algorithms, our algorithm remarkably outperforms them in terms of the best, median, mean, and worst objective function values and the standard deviations.
ISBN:0780393635
9780780393639
ISSN:1089-778X
DOI:10.1109/CEC.2005.1554811