Unsupervised partial volume estimation in single-channel image data

Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Workshop on Mathematical Methods in Biomedical Image Analysis : proceedings, Hilton Head Island, South Carolina, June 11-12, 2000 S. 170 - 177
Hauptverfasser: Pham, D.L., Prince, J.L.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 2000
Schlagworte:
ISBN:9780769507378, 0769507379
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-channel image data. Based on a statistical image model, an algorithm is derived for estimating both partial volumes and the means of the different tissue classes in the image. To compensate for the ill-posed nature of the estimation problem, the authors employ a Bayesian approach that places a prior probability model on the parameters. They demonstrate on simulated and real images that the new algorithm is superior in several respects to the fuzzy and Gaussian clustering algorithms that have previously been used for modeling partial volume effects.
AbstractList Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-channel image data. Based on a statistical image model, an algorithm is derived for estimating both partial volumes and the means of the different tissue classes in the image. To compensate for the ill-posed nature of the estimation problem, the authors employ a Bayesian approach that places a prior probability model on the parameters. They demonstrate on simulated and real images that the new algorithm is superior in several respects to the fuzzy and Gaussian clustering algorithms that have previously been used for modeling partial volume effects.
Author Pham, D.L.
Prince, J.L.
Author_xml – sequence: 1
  givenname: D.L.
  surname: Pham
  fullname: Pham, D.L.
  organization: Lab. of Personality & Cognition, Gerontology Res. Center, Baltimore, MD, USA
– sequence: 2
  givenname: J.L.
  surname: Prince
  fullname: Prince, J.L.
BookMark eNotj8tqwzAUBQVtoW3iD2hX-gG7Vw9L1jI1fQQSuknWQZauUxVHNpYT6N_XkK5mMTCc80huYx-RkCcGBWNgXrbb1_Wq4ABQVCUXurwhmdEVaGVK0EJX9yRL6Wf2IEypJH8g9T6m84DjJST0dLDjFGxHL313PiHFNIWTnUIfaYg0hXjsMHffNkbs6GyOSL2d7JLctbZLmP1zQfbvb7v6M998fazr1SYPDOSUO-WM9soblKJB2TKPkmnXNugEV8g1b9GaymMjHGgssZGaNS0qxaUDDmJBnq_dgIiHYZwXjL-H61PxB-IZTKM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MMBIA.2000.852375
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EndPage 177
ExternalDocumentID 852375
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i104t-c6c97d6d9e43be4f1de417cfbec326e272fea98deb3c07e5eb471bfe6624c0203
IEDL.DBID RIE
ISBN 9780769507378
0769507379
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000088359800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Aug 26 17:40:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-c6c97d6d9e43be4f1de417cfbec326e272fea98deb3c07e5eb471bfe6624c0203
PageCount 8
ParticipantIDs ieee_primary_852375
PublicationCentury 2000
PublicationDate 20000000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle IEEE Workshop on Mathematical Methods in Biomedical Image Analysis : proceedings, Hilton Head Island, South Carolina, June 11-12, 2000
PublicationTitleAbbrev MMBIA
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395642
Score 1.2888889
Snippet Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate...
SourceID ieee
SourceType Publisher
StartPage 170
SubjectTerms Anatomical structure
Bayesian methods
Biomedical imaging
Brain modeling
Clustering algorithms
Cognition
Gerontology
Image segmentation
Laboratories
Pathology
Title Unsupervised partial volume estimation in single-channel image data
URI https://ieeexplore.ieee.org/document/852375
WOSCitedRecordID wos000088359800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sEfGk1opvcvCadp95HFUsCrb0YKG30iQTKZRt6cPfbx7biuDF22YXlpAJM_PN5PsC8KASYVNdKorOL9LCGE6lKRgtTcKtyxAs2mDpdz4YiPFYDmud7cCFQcRw-Aw7_jH08s1Cb32prCscauJlAxqcs0jV2pdTktwl-jtgLl2Sk3NZ6-vsxqJuaqaJ7Pb7T2-PgabSiT_9dblKiC29k3_N6hTaPxw9MtxHnzM4wKoFR_26VX4Oz6NqvV16T7BGQ5Z-h0znJDoj4qU1ImeRzCriywVzpJ4DXOGcuC-fSPzR0TaMei8fz6-0vjGBzhys2lDNtOSGGYlFrrCwqcEi5do6Q7k0DTOeWZxKYRyC1gnHEpWLTcoiY1mhfU_yAprVosJLIFmmE6a0NjIXXoVeZUyKpETp8AhXOr-Cll-KyTKKYkziKlz_-fYGjiOD3VcubqG5WW3xDg7112a2Xt0HQ34D4Ambzw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60inpSa8W3OXhNu89kc9RiabFbemiht9IkEyks29KHv99kd1sRvHjbByxLJszMN5PvG4AX6SXGV7GkaP0ijbTmVOiI0Vh73NgMwaApLN3ng0EymYhhpbNdcGEQsTh8hk13WfTy9UJtXamslVjUxONDOHKDsyqy1r6g4oU21d9Bc2HTnJCLSmFnd59UbU3fE600feu9FkSVZvnZX-NViujSOf_Xf11A44elR4b7-HMJB5jX4SStmuVX0B7n6-3S-YI1arJ0e2SWkdIdESeuUbIWyTwnrmCQIXUs4BwzYt98InGHRxsw7ryP2l1azUygcwusNlQxJbhmWmAUSoyMrzHyuTLWVDZRw4AHBmci0RZDK49jjNJGJ2mQsSBSrit5DbV8keMNkCBQHpNKaREmTodeBkwkXozCIhIuVXgLdbcU02UpizEtV-Huz6fPcNodpf1pvzf4uIezks_u6hgPUNustvgIx-prM1-vngqjfgMyrp8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Workshop+on+Mathematical+Methods+in+Biomedical+Image+Analysis+%3A+proceedings%2C+Hilton+Head+Island%2C+South+Carolina%2C+June+11-12%2C+2000&rft.atitle=Unsupervised+partial+volume+estimation+in+single-channel+image+data&rft.au=Pham%2C+D.L.&rft.au=Prince%2C+J.L.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780769507378&rft.spage=170&rft.epage=177&rft_id=info:doi/10.1109%2FMMBIA.2000.852375&rft.externalDocID=852375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/sc.gif&client=summon&freeimage=true