Unsupervised partial volume estimation in single-channel image data
Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-cha...
Gespeichert in:
| Veröffentlicht in: | IEEE Workshop on Mathematical Methods in Biomedical Image Analysis : proceedings, Hilton Head Island, South Carolina, June 11-12, 2000 S. 170 - 177 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2000
|
| Schlagworte: | |
| ISBN: | 9780769507378, 0769507379 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-channel image data. Based on a statistical image model, an algorithm is derived for estimating both partial volumes and the means of the different tissue classes in the image. To compensate for the ill-posed nature of the estimation problem, the authors employ a Bayesian approach that places a prior probability model on the parameters. They demonstrate on simulated and real images that the new algorithm is superior in several respects to the fuzzy and Gaussian clustering algorithms that have previously been used for modeling partial volume effects. |
|---|---|
| AbstractList | Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate delineation of anatomical structures difficult. Here, the authors propose a method for unsupervised estimation of partial volume effects in single-channel image data. Based on a statistical image model, an algorithm is derived for estimating both partial volumes and the means of the different tissue classes in the image. To compensate for the ill-posed nature of the estimation problem, the authors employ a Bayesian approach that places a prior probability model on the parameters. They demonstrate on simulated and real images that the new algorithm is superior in several respects to the fuzzy and Gaussian clustering algorithms that have previously been used for modeling partial volume effects. |
| Author | Pham, D.L. Prince, J.L. |
| Author_xml | – sequence: 1 givenname: D.L. surname: Pham fullname: Pham, D.L. organization: Lab. of Personality & Cognition, Gerontology Res. Center, Baltimore, MD, USA – sequence: 2 givenname: J.L. surname: Prince fullname: Prince, J.L. |
| BookMark | eNotj8tqwzAUBQVtoW3iD2hX-gG7Vw9L1jI1fQQSuknWQZauUxVHNpYT6N_XkK5mMTCc80huYx-RkCcGBWNgXrbb1_Wq4ABQVCUXurwhmdEVaGVK0EJX9yRL6Wf2IEypJH8g9T6m84DjJST0dLDjFGxHL313PiHFNIWTnUIfaYg0hXjsMHffNkbs6GyOSL2d7JLctbZLmP1zQfbvb7v6M998fazr1SYPDOSUO-WM9soblKJB2TKPkmnXNugEV8g1b9GaymMjHGgssZGaNS0qxaUDDmJBnq_dgIiHYZwXjL-H61PxB-IZTKM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MMBIA.2000.852375 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EndPage | 177 |
| ExternalDocumentID | 852375 |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i104t-c6c97d6d9e43be4f1de417cfbec326e272fea98deb3c07e5eb471bfe6624c0203 |
| IEDL.DBID | RIE |
| ISBN | 9780769507378 0769507379 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000088359800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue Aug 26 17:40:12 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i104t-c6c97d6d9e43be4f1de417cfbec326e272fea98deb3c07e5eb471bfe6624c0203 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_852375 |
| PublicationCentury | 2000 |
| PublicationDate | 20000000 |
| PublicationDateYYYYMMDD | 2000-01-01 |
| PublicationDate_xml | – year: 2000 text: 20000000 |
| PublicationDecade | 2000 |
| PublicationTitle | IEEE Workshop on Mathematical Methods in Biomedical Image Analysis : proceedings, Hilton Head Island, South Carolina, June 11-12, 2000 |
| PublicationTitleAbbrev | MMBIA |
| PublicationYear | 2000 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000395642 |
| Score | 1.2888889 |
| Snippet | Partial volume effects are present in nearly all medical imaging data. These artifacts blur the boundaries between different regions, making accurate... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 170 |
| SubjectTerms | Anatomical structure Bayesian methods Biomedical imaging Brain modeling Clustering algorithms Cognition Gerontology Image segmentation Laboratories Pathology |
| Title | Unsupervised partial volume estimation in single-channel image data |
| URI | https://ieeexplore.ieee.org/document/852375 |
| WOSCitedRecordID | wos000088359800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sEfGk1opvcvCadp95HFUsCrb0YKG30iQTKZRt6cPfbx7biuDF22YXlpAJM_PN5PsC8KASYVNdKorOL9LCGE6lKRgtTcKtyxAs2mDpdz4YiPFYDmud7cCFQcRw-Aw7_jH08s1Cb32prCscauJlAxqcs0jV2pdTktwl-jtgLl2Sk3NZ6-vsxqJuaqaJ7Pb7T2-PgabSiT_9dblKiC29k3_N6hTaPxw9MtxHnzM4wKoFR_26VX4Oz6NqvV16T7BGQ5Z-h0znJDoj4qU1ImeRzCriywVzpJ4DXOGcuC-fSPzR0TaMei8fz6-0vjGBzhys2lDNtOSGGYlFrrCwqcEi5do6Q7k0DTOeWZxKYRyC1gnHEpWLTcoiY1mhfU_yAprVosJLIFmmE6a0NjIXXoVeZUyKpETp8AhXOr-Cll-KyTKKYkziKlz_-fYGjiOD3VcubqG5WW3xDg7112a2Xt0HQ34D4Ambzw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60inpSa8W3OXhNu89kc9RiabFbemiht9IkEyks29KHv99kd1sRvHjbByxLJszMN5PvG4AX6SXGV7GkaP0ijbTmVOiI0Vh73NgMwaApLN3ng0EymYhhpbNdcGEQsTh8hk13WfTy9UJtXamslVjUxONDOHKDsyqy1r6g4oU21d9Bc2HTnJCLSmFnd59UbU3fE600feu9FkSVZvnZX-NViujSOf_Xf11A44elR4b7-HMJB5jX4SStmuVX0B7n6-3S-YI1arJ0e2SWkdIdESeuUbIWyTwnrmCQIXUs4BwzYt98InGHRxsw7ryP2l1azUygcwusNlQxJbhmWmAUSoyMrzHyuTLWVDZRw4AHBmci0RZDK49jjNJGJ2mQsSBSrit5DbV8keMNkCBQHpNKaREmTodeBkwkXozCIhIuVXgLdbcU02UpizEtV-Huz6fPcNodpf1pvzf4uIezks_u6hgPUNustvgIx-prM1-vngqjfgMyrp8Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Workshop+on+Mathematical+Methods+in+Biomedical+Image+Analysis+%3A+proceedings%2C+Hilton+Head+Island%2C+South+Carolina%2C+June+11-12%2C+2000&rft.atitle=Unsupervised+partial+volume+estimation+in+single-channel+image+data&rft.au=Pham%2C+D.L.&rft.au=Prince%2C+J.L.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780769507378&rft.spage=170&rft.epage=177&rft_id=info:doi/10.1109%2FMMBIA.2000.852375&rft.externalDocID=852375 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769507378/sc.gif&client=summon&freeimage=true |

