A modified fuzzy C-means algorithm for feature selection

In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2000 19th International Conference of the North American Fuzzy Information Processing Society s. 148 - 152
Hlavní autoři: Frosini, G., Lazzerini, B., Marcelloni, F.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2000
Témata:
ISBN:9780780362741, 0780362748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time consuming than other feature selection methods.
ISBN:9780780362741
0780362748
DOI:10.1109/NAFIPS.2000.877409