Rotation invariant face detection using a model-based clustering algorithm

We present a model-based clustering algorithm for locating frontal views of human faces with in-plane rotation in complex scenes, which can describe the arbitrary shape of the distributions efficiently in a feature space. An optimization technique is employed for selecting representative face and no...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2000 International Conference on Multimedia and Expo Ročník 2; s. 1149 - 1152 vol.2
Hlavní autoři: Byeong Hwan Jeon, Sang Uk Lee, Kyung Mu Lee
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2000
Témata:
ISBN:0780365364, 9780780365360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a model-based clustering algorithm for locating frontal views of human faces with in-plane rotation in complex scenes, which can describe the arbitrary shape of the distributions efficiently in a feature space. An optimization technique is employed for selecting representative face and nonface models from the sample images. Image invariance properties on human faces and Hausdorff distance are used for finding the orientation of a face candidate, and the Euclidean distance and normalized correlation coefficient are used for the similarity measures between features. Three different types of feature spaces are used for the matching; binary image, graylevel image, and frequency information. Binary similarity is used for the reduction of the processing time in detecting candidate faces and their orientations in a scene, while the correlation measures of graylevel images and frequency domain features obtained by DCT (Discrete Cosine Transform) are used for the verification. Experimental results show that proposed face detection algorithm gives very high detection ratio compared to the conventional ones.
ISBN:0780365364
9780780365360
DOI:10.1109/ICME.2000.871564