LMS/LMF and RLS Volterra system identification based on nonlinear Wiener model

This paper presents the LMS/LMF and RLS adaptive filtering algorithms based on the nonlinear Wiener model for Volterra system identification. This Wiener model contains three sections: a single-input multi-output linear with memory system, a multi-input, multi-output nonlinear no-memory system and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:1998 IEEE International Symposium on Circuits and Systems Jg. 5; S. 206 - 209 vol.5
Hauptverfasser: Shue-Lee Chang, Ogunfunmi, T.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 1998
Schlagworte:
ISBN:9780780344556, 0780344553
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents the LMS/LMF and RLS adaptive filtering algorithms based on the nonlinear Wiener model for Volterra system identification. This Wiener model contains three sections: a single-input multi-output linear with memory system, a multi-input, multi-output nonlinear no-memory system and a multi-input, single-output amplification and summary system. For Gaussian white input signal, because of the orthogonality of the Q-polynomial, the autocorrelation matrix can be diagonalizable which allows us to apply LMS algorithm without any difficulty. This result can also be extended easily to LMF algorithm family. If we apply RLS, the faster convergence speed can be expected. In certain circumstances, the nonlinear Wiener model allows us to identify a complicated Volterra system with only very few terms but still keep the linear filtering properties which means that we can achieve good performance without sacrificing the computation complexity.
AbstractList This paper presents the LMS/LMF and RLS adaptive filtering algorithms based on the nonlinear Wiener model for Volterra system identification. This Wiener model contains three sections: a single-input multi-output linear with memory system, a multi-input, multi-output nonlinear no-memory system and a multi-input, single-output amplification and summary system. For Gaussian white input signal, because of the orthogonality of the Q-polynomial, the autocorrelation matrix can be diagonalizable which allows us to apply LMS algorithm without any difficulty. This result can also be extended easily to LMF algorithm family. If we apply RLS, the faster convergence speed can be expected. In certain circumstances, the nonlinear Wiener model allows us to identify a complicated Volterra system with only very few terms but still keep the linear filtering properties which means that we can achieve good performance without sacrificing the computation complexity.
Author Ogunfunmi, T.
Shue-Lee Chang
Author_xml – sequence: 1
  surname: Shue-Lee Chang
  fullname: Shue-Lee Chang
  organization: Electr. Eng. Dept., Santa Clara Univ., CA, USA
– sequence: 2
  givenname: T.
  surname: Ogunfunmi
  fullname: Ogunfunmi, T.
BookMark eNotT81qwzAYM2yDbV0eYDv5BdLasZ34O5awboV0g2U_x-LEn8EjcYadS99-gVYIJF0kdE-uwxSQkEfO1pwz2OzbetuuOYBelyAXXJEMKs0WCimVKm9JltIvW7AkJuCOvDWHdtMcdtQESz-aln5Pw4wxGppOacaReoth9s73ZvZToJ1JaOlilunBBzSR_ngMGOk4WRweyI0zQ8LsoivytXv-rF_z5v1lX2-b3HMm57xAwzig1p3TqjDKorPKYK8qxJKX6CRI6KWFTmBlJO9BdB0UmjsrtLEgVuTp3OsR8fgX_Wji6Xg-Lf4BlttPPw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCAS.1998.694444
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 209 vol.5
ExternalDocumentID 694444
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAWTH
ACGHX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i104t-2ea019e88bf852a5defd5aec57ee616ef4949c4d9b3e7a41c93bb9281fd38ad93
IEDL.DBID RIE
ISBN 9780780344556
0780344553
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000075224600644&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:45:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-2ea019e88bf852a5defd5aec57ee616ef4949c4d9b3e7a41c93bb9281fd38ad93
ParticipantIDs ieee_primary_694444
PublicationCentury 1900
PublicationDate 19980000
PublicationDateYYYYMMDD 1998-01-01
PublicationDate_xml – year: 1998
  text: 19980000
PublicationDecade 1990
PublicationTitle 1998 IEEE International Symposium on Circuits and Systems
PublicationTitleAbbrev ISCAS
PublicationYear 1998
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000455039
Score 1.259116
Snippet This paper presents the LMS/LMF and RLS adaptive filtering algorithms based on the nonlinear Wiener model for Volterra system identification. This Wiener model...
SourceID ieee
SourceType Publisher
StartPage 206
SubjectTerms Autocorrelation
Computational complexity
Convergence
Filtering algorithms
Kernel
Least squares approximation
Maximum likelihood detection
Polynomials
Resonance light scattering
System identification
Title LMS/LMF and RLS Volterra system identification based on nonlinear Wiener model
URI https://ieeexplore.ieee.org/document/694444
Volume 5
WOSCitedRecordID wos000075224600644&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFMctWjEwcRVxywNr2iSOrxFVVCClVUWgdKsc-0XK0qKQ8vnxEYqQWMjkZEgiv-Fd_v8eQndSWTcAREUsE1WUMaCRo9xETMexcpX9xHMKFjmfzcRyKecdZ9trYQDAHz6DoVv6Xr7Z6K0rlY2YzOzVQz3OWZBq7copsVPnEukTc-EwdpSSjq_zfc-6pmYSy9FTMb4vnFJPDMNLfw1X8b5lcvivvzpCgx-NHp7vvM8x2oP1KZrl02KUTydYrQ1-zgu82LhueKNwIDbj2nSng7xBsPNhBtvFOhAzVIPfageixn5CzgC9Th5exo9RNzEhqm1a1UYpKBuygRBlJWiqqIHKUAWacgCWMKgci0ZnRpYEuMoSLUlZylQklSFCGUnOUN9-EM4RpmAzKRu9cUm1zQGtRatUZzY6EEmWcsUv0InbitV7gGKswi5c_vn0Ch0EKZ-rXFyjftts4Qbt68-2_mhuvSG_AGmlmVQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFMctKEgwcRVx44HVbQ47sUdUUbUijSpSSrfKsV-kLCkKLZ8f2wlFSCxkcjIkkd_wLv9_D6EHIY0bgFCSiPKC0AgYsZQbEinPk7ay7ztOwTyJ05QvFmLacradFgYA3OEz6Nml6-XrldrYUlk_EtRcu2iPURp4jVhrW1DxrD43FC415xZkx1jYEna-76O2rel7oj_OBo-Z1erxXvPaX-NVnHcZHv3rv45R90elh6db_3OCdqA6Q2kyyfrJZIhlpfFLkuH5yvbDa4kbZjMudXs-yJkEWy-msVlUDTND1vittChq7GbkdNHr8Gk2GJF2ZgIpTWK1JgFIE7QB53nBWSCZhkIzCYrFAJEfQWFpNIpqkYcQS-orEea5CLhf6JBLLcJz1DEfhAuEGZhcysRvsWDKZIHGpkWgqIkPuE-DWMaX6NRuxfK9wWIsm124-vPpPToYzSbJMhmnz9fosBH22TrGDeqs6w3con31uS4_6jtn1C-XRJyb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1998+IEEE+International+Symposium+on+Circuits+and+Systems&rft.atitle=LMS%2FLMF+and+RLS+Volterra+system+identification+based+on+nonlinear+Wiener+model&rft.au=Shue-Lee+Chang&rft.au=Ogunfunmi%2C+T.&rft.date=1998-01-01&rft.pub=IEEE&rft.isbn=9780780344556&rft.volume=5&rft.spage=206&rft.epage=209+vol.5&rft_id=info:doi/10.1109%2FISCAS.1998.694444&rft.externalDocID=694444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780344556/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780344556/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780344556/sc.gif&client=summon&freeimage=true