A genetic approach towards optimal color image quantization

In this paper the problem of local optimality of color image quantization procedures is discussed. The well-known and frequently used C-means clustering algorithm (CMA) is applied to the problem, and its dependence on initial conditions is studied. A hybrid approach, combining CMA with a genetic alg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:1996 IEEE International Conference on Image Processing Proceedings Ročník 3; s. 1031 - 1034 vol.3
Hlavný autor: Scheunders, P.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 1996
Predmet:
ISBN:9780780332591, 0780332598
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper the problem of local optimality of color image quantization procedures is discussed. The well-known and frequently used C-means clustering algorithm (CMA) is applied to the problem, and its dependence on initial conditions is studied. A hybrid approach, combining CMA with a genetic algorithm is constructed, and it is shown that this approach is insensitive to its initial conditions. Results compare the performance of the genetic approach with CMA on three different types of initial conditions: random initial conditions and two popular color image quantization algorithms: the median-cut algorithm and the variance-based algorithm. In all cases the genetic approach outperforms CMA.
AbstractList In this paper the problem of local optimality of color image quantization procedures is discussed. The well-known and frequently used C-means clustering algorithm (CMA) is applied to the problem, and its dependence on initial conditions is studied. A hybrid approach, combining CMA with a genetic algorithm is constructed, and it is shown that this approach is insensitive to its initial conditions. Results compare the performance of the genetic approach with CMA on three different types of initial conditions: random initial conditions and two popular color image quantization algorithms: the median-cut algorithm and the variance-based algorithm. In all cases the genetic approach outperforms CMA.
Author Scheunders, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Scheunders
  fullname: Scheunders, P.
  organization: Vision Lab., Antwerp Univ., Belgium
BookMark eNotT81KxDAYDKigrr2Lp7xA65e_NsHTUnQtLOhBz0tMvq6R2tQ0Ivr0VtZhmJnTMHNOjsc4IiGXDCrGwFx3bfdYMWPqStUMQB-RwjQaFgrBlWGnpJjnN1ggleIazsjNmu5xxBwctdOUonWvNMcvm_xM45TDux2oi0NMdIl7pB-fdszhx-YQxwty0tthxuLfV-T57vapvS-3D5uuXW_LwEDmknPQXmBjas0abZmTXlp03molbFNL2QvD0ele_6lwIJSHl56L3rNagRcrcnXoDYi4m9KyJH3vDg_FL0aZSA0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIP.1996.561008
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 1034 vol.3
ExternalDocumentID 561008
GroupedDBID 6IE
6IK
6IL
AAJGR
AAWTH
ACGHX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i104t-2208d3e7968178a1c4d4aecda853a7644f392ec8f82ec83c035d0bf23fd1650d3
IEDL.DBID RIE
ISBN 9780780332591
0780332598
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=561008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Aug 26 17:35:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-2208d3e7968178a1c4d4aecda853a7644f392ec8f82ec83c035d0bf23fd1650d3
ParticipantIDs ieee_primary_561008
PublicationCentury 1900
PublicationDate 19960000
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 19960000
PublicationDecade 1990
PublicationTitle 1996 IEEE International Conference on Image Processing Proceedings
PublicationTitleAbbrev ICIP
PublicationYear 1996
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000455280
Score 1.2428693
Snippet In this paper the problem of local optimality of color image quantization procedures is discussed. The well-known and frequently used C-means clustering...
SourceID ieee
SourceType Publisher
StartPage 1031
SubjectTerms Clustering algorithms
Color
Displays
Genetic algorithms
Genetic mutations
Humans
Machine vision
Physics
Pixel
Quantization
Title A genetic approach towards optimal color image quantization
URI https://ieeexplore.ieee.org/document/561008
Volume 3
WOSCitedRecordID wos561008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46FDypc-L8RQ5eu-VXmwRPMhzuMnZQ2G2kyYsMdNOt8-83SbuJ4MVLSXoobVr6vvfyfd9D6I4pagrJI1WHqEyErDbTGkxWaEtyZxlxjqRmE3I8VtOpnjQ-20kLAwCJfAa9OEx7-W5pN7FU1o-xPgp796WUtVRrV04JyCRniqTEXBHOA6pXjb_Odk63u5RE90eD0SQK9Ypefc1fvVVSaBke_-umTlDnR6KHJ7vgc4r2YNFGh4nPaddn6P4Bhy8jChTx1jUcV4khu8bL8Jd4N284-lWvcBi-Av7chBVuJJkd9DJ8fB48ZU2fhGwekqkqY4wox0HqQlGpDLXCCQPWmRCKjQyAxwcQBFZ5FY_cEp47UnrGvaMBoDl-jlqL5QIuEDa-YL4sc-u0E8JSJSX1JZeiFODCpIvacQVmH7UVxqx--Ms_z16ho5riHOsV16hVrTZwgw7sVzVfr27T6_sGX3qW7A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4MavSkIsZve_A66NfWNp4MkUBEwgETbqTrhyERUBj-fttuYEy8eFnaHZatW_Y-79vneV4A7onAKuM0UHWQSJjPahMprUoyqVFqNEHGoNhsgg8GYjyWw8pnO2phrLWRfGabYRj38s1Cr0OprBVifRD27qaMEVyKtbYFFY9NUiJQTM0FotTjelE57GzmeLNPiWSr1-4Ng1Qva5ZX_dVdJQaXztG_busYNH5EenC4DT8nYMfO62A_Mjr16hQ8PEL_bQSJItz4hsMicmRXcOH_EzP1DoNj9RL64ZuFn2u_xpUoswFeO0-jdjepOiUkU59OFQkhSBhqucwE5kJhzQxTVhvlg7HiHvI4D4OsFk6EI9WIpgbljlBnsIdohp6B2nwxt-cAKpcRl-epNtIwprHgHLuccpYza_zkAtTDCkw-SjOMSfnwl3-evQMH3dFLf9LvDZ6vwGFJeA7Vi2tQK5ZrewP29FcxXS1v46v8Bm0JmjM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1996+IEEE+International+Conference+on+Image+Processing+Proceedings&rft.atitle=A+genetic+approach+towards+optimal+color+image+quantization&rft.au=Scheunders%2C+P.&rft.date=1996-01-01&rft.pub=IEEE&rft.isbn=9780780332591&rft.volume=3&rft.spage=1031&rft.epage=1034+vol.3&rft_id=info:doi/10.1109%2FICIP.1996.561008&rft.externalDocID=561008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780332591/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780332591/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780332591/sc.gif&client=summon&freeimage=true