Boundary Element Method

This chapter presents a brief introduction of the boundary element method (BEM) along with a simple example problem for easy understanding of the method. To use the BEM for solving boundary value problems, one must transform the problem into an equivalent boundary integral equation problem. In this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 91 - 101
Hlavní autori: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Médium: Kapitola
Jazyk:English
Vydavateľské údaje: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Vydanie:1
Predmet:
ISBN:9781119423423, 1119423422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This chapter presents a brief introduction of the boundary element method (BEM) along with a simple example problem for easy understanding of the method. To use the BEM for solving boundary value problems, one must transform the problem into an equivalent boundary integral equation problem. In this regard, the fundamental solution and Green's integral theorems are very useful tools. Accordingly, the chapter discusses the fundamental solution, Green's function, and integral theorems. Before discussing the fundamental solution, a brief review of the Heaviside function and Dirac delta function in R 2 is needed. Green's function is described as integral kernel that can be used to solve differential equations. In the chapter, the Green's function may be considered as a fundamental solution for the differential equation. Green's integral formula is a very useful tool for finding the derivation of integral equations formed in the BEM.
ISBN:9781119423423
1119423422
DOI:10.1002/9781119423461.ch8