Weighted Residual Methods

Weighted residual method (WRM) is an approximation technique in which solution of differential equation is approximated by linear combination of trial or shape functions having unknown coefficients. The approximate solution is then substituted in the governing differential equation resulting in erro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 31 - 43
Hlavní autori: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Médium: Kapitola
Jazyk:English
Vydavateľské údaje: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Vydanie:1
Predmet:
ISBN:9781119423423, 1119423422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Weighted residual method (WRM) is an approximation technique in which solution of differential equation is approximated by linear combination of trial or shape functions having unknown coefficients. The approximate solution is then substituted in the governing differential equation resulting in error or residual. Finally, in the WRM the residual is forced to vanish at average points or made as small as possible depending on the weight function in order to find the unknown coefficients. The authors illustrate various WRMs, viz. collocation, subdomain, least‐square, and Galerkin methods applied for solving ordinary differential equations subject to boundary conditions. They also check the efficiency of various WRMs by comparing the solution obtained using collocation, subdomain, least‐square, and Galerkin methods for the boundary value problems. Lastly, the authors present few exercise problems for self‐validation.
AbstractList Weighted residual method (WRM) is an approximation technique in which solution of differential equation is approximated by linear combination of trial or shape functions having unknown coefficients. The approximate solution is then substituted in the governing differential equation resulting in error or residual. Finally, in the WRM the residual is forced to vanish at average points or made as small as possible depending on the weight function in order to find the unknown coefficients. The authors illustrate various WRMs, viz. collocation, subdomain, least‐square, and Galerkin methods applied for solving ordinary differential equations subject to boundary conditions. They also check the efficiency of various WRMs by comparing the solution obtained using collocation, subdomain, least‐square, and Galerkin methods for the boundary value problems. Lastly, the authors present few exercise problems for self‐validation.
Weighted residual method (WRM) is an approximation technique in which solution of differential equation is approximated by linear combination of trial or shape functions having unknown coefficients. The approximate solution is then substituted in the governing differential equation resulting in error or residual. Finally, in the WRM the residual is forced to vanish at average points or made as small as possible depending on the weight function in order to find the unknown coefficients. The authors illustrate various WRMs, viz. collocation, subdomain, least‐square, and Galerkin methods applied for solving ordinary differential equations subject to boundary conditions. They also check the efficiency of various WRMs by comparing the solution obtained using collocation, subdomain, least‐square, and Galerkin methods for the boundary value problems. Lastly, the authors present few exercise problems for self‐validation.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  givenname: Snehashish
  surname: Chakraverty
  fullname: Chakraverty, Snehashish
– sequence: 2
  givenname: Nisha
  surname: Mahato
  fullname: Mahato, Nisha
– sequence: 3
  givenname: Perumandla
  surname: Karunakar
  fullname: Karunakar, Perumandla
– sequence: 4
  givenname: Tharasi
  surname: Dilleswar Rao
  fullname: Dilleswar Rao, Tharasi
BookMark eNpVj91Kw0AQRlf8QVv7AL3rC7TuzGyyu5dStAoVQRQvl83uxARDU7sp4tubEi_sxTDMB2c-zkicbdoNCzEFuQAp8cZqAwBWIakcFqGiEzH5l5E8PbqRLsQIpJUajdR0KSYp1YUkLY3NtL0S03euP6qO4-yFUx33vpk9cVe1MV2L89I3iSd_eyze7u9elw_z9fPqcXm7ntcgieaQ2ZAVWGjI2ZQasfQB2AQti0gxM9C3ZbmPqBUFtEHlEktU4MsQibigsYDh73fd8I_jom0_kwPpDr7uyNf1vofpGRyY7a792nPqBizwptv5JlR-2_EuuUwrQFQOtVO2h6YDVDOzG2pMbixaTb8FCV-o
ContentType Book Chapter
Copyright 2019 Wiley
2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley
– notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch3
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781119423430
9781119423447
9781119423461
1119423449
1119423430
1119423465
Edition 1
EndPage 43
ExternalDocumentID 10.1002/9781119423461.ch3
EBC5741224_27_49
8689297
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABQPQ
ADUVA
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
GEOUK
GQOVZ
IETMW
IPJKO
IVUIE
JFSCD
KKBTI
LMJTD
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
YPLAZ
ZEEST
ABAZT
ABBFG
ACGYG
ACLGV
ACNUM
AENVZ
AHWGJ
FFUUA
WIIVT
ID FETCH-LOGICAL-i1033-159c5b2b716e8f722fac1e8c70bd3d581b0356ad2743c29c4602f241afcd33eb3
ISBN 9781119423423
1119423422
IngestDate Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:01 EDT 2025
Fri Nov 11 10:38:51 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Boundary conditions
Shape
IEEE Sections
Force
Method of moments
Standards
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i1033-159c5b2b716e8f722fac1e8c70bd3d581b0356ad2743c29c4602f241afcd33eb3
OCLC 1090728073
PQID EBC5741224_27_49
PageCount 13
ParticipantIDs wiley_ebooks_10_1002_9781119423461_ch3_ch3
ieee_books_8689297
proquest_ebookcentralchapters_5741224_27_49
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References Hatami (c03-cit-0003) 2017
Logan (c03-cit-0007) 2011
Lindgren (c03-cit-0006) 2009
Baluch, Mohsen, Ali (c03-cit-0004) 1983; 7
Gerald, Wheatley (c03-cit-0001) 2004
Finlayson (c03-cit-0002) 2013; 73
Locker (c03-cit-0005) 1971; 154
References_xml – year: 2017
  ident: c03-cit-0003
  article-title: Weighted Residual Methods: Principles, Modifications and Applications
– volume: 7
  start-page: 362
  issue: 5
  year: 1983
  end-page: 365
  ident: c03-cit-0004
  article-title: Method of weighted residuals as applied to nonlinear differential equations
  publication-title: Applied Mathematical Modelling
– volume: 154
  start-page: 57
  year: 1971
  end-page: 68
  ident: c03-cit-0005
  article-title: The method of least squares for boundary value problems
  publication-title: Transactions of the American Mathematical Society
– year: 2004
  ident: c03-cit-0001
  article-title: Applied Numerical Analysis
– volume: 73
  year: 2013
  ident: c03-cit-0002
  article-title: The Method of Weighted Residuals and Variational Principles
– year: 2009
  ident: c03-cit-0006
  article-title: From Weighted Residual Methods to Finite Element Methods
– year: 2011
  ident: c03-cit-0007
  article-title: A First Course in the Finite Element Method
SSID ssib037089579
ssj0002152863
ssib035724529
ssib043664869
ssib050313482
Score 1.5612078
Snippet Weighted residual method (WRM) is an approximation technique in which solution of differential equation is approximated by linear combination of trial or shape...
SourceID wiley
proquest
ieee
SourceType Publisher
StartPage 31
SubjectTerms boundary value problems
collocation method
Galerkin method
least‐square method
ordinary differential equations
subdomain method
weighted residual methods
Title Weighted Residual Methods
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689297
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=49&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6wQG4MD5Ex4d64MRUSOzEds6ogIRaprGJ3SzHcdSIkkHcbvtH-H95_oiXUglpBw6NqshNbD_3fb_3Q-h1qSmhtKymVZ3qaZaCgVJaYyXjWFGZlDlXpQObYIsFPz8vjkej330tzOWKtS2_vi5-_ldSwz0gti2dvQW540PhBnwHosMVyA7XvzTibd-rzznuQ_qLjQ_F-E4AX_WPJqY1uD4k3oU9d_jRriUDMD8PlbK2PvTZr83AlRfD_xa82SeHtXppYZhM9CbP5VI6SCY4XGYpj05k20RuLrtNK7_7XO5j3dnAQbWKAuFEXvhcJdlJ08BEVittrmQ3PM7fnAtX22JK4-vHwtyHbot0GIFxImU3L2g7-dMbuMCJC1D4MkwGTDaIDS-ufZOnHUHgG8sOnkDTt2pJbqRezEX8x-g9tMcYMM87H2dfzj73bCq37S77lkBW4FtoYE6Jw6EK08Whm1icfh9QT_C7ndcEYJ8tG2doKTlV5_QhemDLXya2LgXmf4BGun2E7s9jd1_zGI17Ykx6YkwCMZ6gsw-z0_efpgFiY9qkFsUPlFmVl7gEq1nzmmFcS5VqrlhSVqTKwaZJSE5lhUHRVLhQGU1wDUqfrFVFiC7JU7TfXrT6GZooktaM6AqTHAQD_LbIZEVxVsNomWM9Rgd2lcL-N4zglINizsboqF-zcNkBISVZ-UUakYPGC1qmwExkxRi9cdvihxrhW25jsbWjAnbUfg5vM_g5undzSF-g_XW30S_RXXW5bkz3KhyAPx5BdYA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi%E2%80%90Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha+Rani&rft.au=Karunakar%2C+Perumandla&rft.au=Rao%2C+Tharasi+Dilleswar&rft.atitle=Weighted+Residual+Methods&rft.date=2019-04-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781119423423&rft.spage=31&rft.epage=43&rft_id=info:doi/10.1002%2F9781119423461.ch3&rft.externalDocID=10.1002%2F9781119423461.ch3
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg