Support Vector Machines (SVMs)

Support vector machines (SVMs) are one of the most popular machine learning methods used to classify machine health conditions using the selected feature space. In machine fault detection and diagnosis, SVMs are used for learning special patterns from the acquired signal; then these patterns are cla...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Condition Monitoring with Vibration Signals s. 259 - 277
Hlavní autoři: Ahmed, Hosameldin, Nandi, Asoke K
Médium: Kapitola
Jazyk:angličtina
Vydáno: Chichester, UK Wiley 2019
John Wiley & Sons, Ltd
Vydání:1
Témata:
ISBN:9781119544623, 1119544629
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Support vector machines (SVMs) are one of the most popular machine learning methods used to classify machine health conditions using the selected feature space. In machine fault detection and diagnosis, SVMs are used for learning special patterns from the acquired signal; then these patterns are classified according to the fault occurrence in the machine. This chapter presents essential concepts of the SVM classifier by giving a brief description of the SVM model for binary classification. Then, it explains the multiclass SVM approach and different techniques that can be used for multiclass SVMs. A considerable amount of literature has been published on the application of SVMs and variants in diagnosing machine faults. Most of these studies introduced pre‐processing techniques that include normalisation, feature extraction, transformation, and feature selection. The data produced during the pre‐processing step represent the final training set that is used as input to SVMs.
AbstractList Support vector machines (SVMs) are one of the most popular machine learning methods used to classify machine health conditions using the selected feature space. In machine fault detection and diagnosis, SVMs are used for learning special patterns from the acquired signal; then these patterns are classified according to the fault occurrence in the machine. This chapter presents essential concepts of the SVM classifier by giving a brief description of the SVM model for binary classification. Then, it explains the multiclass SVM approach and different techniques that can be used for multiclass SVMs. A considerable amount of literature has been published on the application of SVMs and variants in diagnosing machine faults. Most of these studies introduced pre‐processing techniques that include normalisation, feature extraction, transformation, and feature selection. The data produced during the pre‐processing step represent the final training set that is used as input to SVMs.
Support vector machines (SVMs) are one of the most popular machine learning methods used to classify machine health conditions using the selected feature space. In machine fault detection and diagnosis, SVMs are used for learning special patterns from the acquired signal; then these patterns are classified according to the fault occurrence in the machine. This chapter presents essential concepts of the SVM classifier by giving a brief description of the SVM model for binary classification. Then, it explains the multiclass SVM approach and different techniques that can be used for multiclass SVMs. A considerable amount of literature has been published on the application of SVMs and variants in diagnosing machine faults. Most of these studies introduced pre‐processing techniques that include normalisation, feature extraction, transformation, and feature selection. The data produced during the pre‐processing step represent the final training set that is used as input to SVMs.
Author Ahmed, Hosameldin
Nandi, Asoke K
Author_xml – sequence: 1
  givenname: Hosameldin
  surname: Ahmed
  fullname: Ahmed, Hosameldin
– sequence: 2
  givenname: Asoke K
  surname: Nandi
  fullname: Nandi, Asoke K
  organization: Brunel University London, UK
BookMark eNptj01Lw0AQQFdU0Nb8AD1Ij3pInNndJLtHKX5Bi4dq8bbsbiY0WpLQrRT99aZGxIKXGRjeG3gDdlA3NTF2hpAgAL_SuUJEnUqZ5SrxCxR7bPB7edln0R-CiyMWhfAKncm5Qg3H7Hz23rbNaj2ak183q9HU-kVVUxhdzObTcHnCDku7DBT97CF7vr15Gt_Hk8e7h_H1JK4QsIxT4KBLVxRgpdNl4bnMtUTvUGjJBQkPKYlMaIuKylxkkoPlhbfaO-dTK4ZM9H831ZI-DLmmeQsGwWwrzU6l2VZ-j85K_rF26c-q7Y22KDvhtBcqIjI9rnSqFCrxBSk1XII
ContentType Book Chapter
Copyright 2019 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd
DOI 10.1002/9781119544678.ch13
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 111954467X
1119544645
9781119544630
9781119544678
9781119544647
1119544637
Edition 1
EndPage 277
ExternalDocumentID 10.1002/9781119544678.ch13
8958818
Genre chapter
GroupedDBID 38.
3XM
6TE
AABBV
AEZLD
AFPKT
ALMA_UNASSIGNED_HOLDINGS
AVNOC
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
IPJKO
JFSCD
KJBCJ
MRDEW
OCL
ZEEST
AATND
ABARN
ABAZT
ABQPQ
ACBYE
ACLGV
ADVEM
AERYV
AFECN
AFOJC
AHWGJ
AJFER
GEOUK
I4C
LQKAK
LWYJN
LYPXV
W1A
WIIVT
YPLAZ
YSPEL
ID FETCH-LOGICAL-i101f-50209fbdd0a4b9fdc247941cb139423e3c05e3639a18ef736420a2dca9cbbc5a3
ISBN 9781119544623
1119544629
IngestDate Sat Nov 15 22:25:08 EST 2025
Tue Nov 10 16:22:10 EST 2020
Tue Jul 13 16:43:26 EDT 2021
IsPeerReviewed false
IsScholarly false
Keywords Support vector machines
Training
Condition monitoring
Vibrations
Rotating machines
Machine learning
Kernel
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i101f-50209fbdd0a4b9fdc247941cb139423e3c05e3639a18ef736420a2dca9cbbc5a3
PageCount 19
ParticipantIDs wiley_ebooks_10_1002_9781119544678_ch13_ch13
ieee_books_8958818
ProviderPackageCode BPEOZ
BGNUA
6TE
ECNEQ
OCL
AEZLD
BKEBE
BEFXN
BFFAM
PublicationCentury 2000
PublicationDate 2019
2019-12-23
PublicationDateYYYYMMDD 2019-01-01
2019-12-23
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationSubtitle Compressive Sampling and Learning Algorithms for Rotating Machines
PublicationTitle Condition Monitoring with Vibration Signals
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Ltd
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Ltd
References Abbasion, Rafsanjani, Farshidianfar, Irani (c13-cit-0001) 2007; 21
Hu, He, Zhang, Zi (c13-cit-0019) 2007; 21
Yang, Yu, Cheng (c13-cit-0041) 2007; 40
Saravanan, Siddabattuni, Ramachandran (c13-cit-0031) 2008; 35
Boser, Guyon, Vapnik (c13-cit-0005) 1992
Zheng, Pan, Cheng (c13-cit-0048) 2017; 85
Joachims (c13-cit-0022) 1998
Chang (c13-cit-0009) 2011; 2
Burges (c13-cit-0006) 1998; 2
Zhang, Chen, He (c13-cit-0045) 2010; 224
Campbell, Cristianini (c13-cit-0008) 1998
Konar, Chattopadhyay (c13-cit-0023) 2011; 11
Widodo, Yang (c13-cit-0038) 2007; 21
Xian, Zeng (c13-cit-0040) 2009; 36
Jack, Nandi (c13-cit-0020) 2001; 215
Gangsar, Tiwari (c13-cit-0013) 2017; 94
Platt (c13-cit-0027) 1998
Vapnik (c13-cit-0036) 1982
Han, Jiang, Zhao (c13-cit-0017) 2018; 40
Sun, Huang (c13-cit-0034) 2011; 24
Widodo, Yang (c13-cit-0037) 2007; 33
Zhu, Song, Xue (c13-cit-0049) 2014; 47
Chen, Tang, Chen (c13-cit-0010) 2013; 46
Guo, Jack, Nandi (c13-cit-0015) 2005; 35
Campbell (c13-cit-0007) 2000
Ahmed, Nandi (c13-cit-0002) 2018; 6
Cortes, Vapnik (c13-cit-0011) 1995; 20
Soualhi, Medjaher, Zerhouni (c13-cit-0032) 2015; 64
Hsu, Lin (c13-cit-0018) 2002; 13
Li, Xu, Wei, Huang (c13-cit-0025) 2016; 77
Zhang, Wang, Chen (c13-cit-0047) 2015; 89
Li, Zhou, Hu, Liu (c13-cit-0024) 2012; 28
Zhang, Zhou (c13-cit-0043) 2013; 41
Liu, Cao, Chen (c13-cit-0026) 2013; 99
Tang, Song, Li, Deng (c13-cit-0035) 2014; 62
Sugumaran, Muralidharan, Ramachandran (c13-cit-0033) 2007; 21
Widodo, Yang, Han (c13-cit-0039) 2007; 32
Guo, Chen, Li (c13-cit-0016) 2009; 15
Jack, Nandi (c13-cit-0021) 2002; 16
Zhang, Jack, Nandi (c13-cit-0044) 2005; 19
Gao, Liu, Tang, Li (c13-cit-0014) 2018; 116
Rojas, Nandi (c13-cit-0029) 2006; 20
Samanta (c13-cit-0030) 2004; 18
Baccarini, Silva, De Menezes, Caminhas (c13-cit-0003) 2011; 38
Zhang, Chen, Wang, Chen (c13-cit-0046) 2015; 167
Bansal, Sahoo, Tiwari, Bordoloi (c13-cit-0004) 2013; 46
Rojas, Nandi (c13-cit-0028) 2005
Fernández‐Francos, Martínez‐Rego, Fontenla‐Romero, Alonso‐Betanzos (c13-cit-0012) 2013; 64
Yuan, Chu (c13-cit-0042) 2006; 20
References_xml – volume: 40
  start-page: 943
  issue: 9–10
  year: 2007
  end-page: 950
  ident: c13-cit-0041
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
– volume: 21
  start-page: 688
  issue: 2
  year: 2007
  end-page: 705
  ident: c13-cit-0019
  article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
  publication-title: Mechanical Systems and Signal Processing
– volume: 24
  start-page: 38
  year: 2011
  end-page: 42
  ident: c13-cit-0034
  article-title: Support vector machine for vibration fault classification of steam turbine‐generator sets
  publication-title: Procedia Engineering
– volume: 32
  start-page: 299
  issue: 2
  year: 2007
  end-page: 312
  ident: c13-cit-0039
  article-title: Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
  publication-title: Expert Systems with Applications
– volume: 2
  issue: 3
  year: 2011
  ident: c13-cit-0009
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 85
  start-page: 746
  year: 2017
  end-page: 759
  ident: c13-cit-0048
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mechanical Systems and Signal Processing
– volume: 19
  start-page: 271
  issue: 2
  year: 2005
  end-page: 289
  ident: c13-cit-0044
  article-title: Fault detection using genetic programming
  publication-title: Mechanical Systems and Signal Processing
– volume: 46
  start-page: 3469
  issue: 9
  year: 2013
  end-page: 3481
  ident: c13-cit-0004
  article-title: Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data
  publication-title: Measurement
– volume: 215
  start-page: 1065
  issue: 9
  year: 2001
  end-page: 1074
  ident: c13-cit-0020
  article-title: Support vector machines for detection and characterization of rolling element bearing faults
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 21
  start-page: 2933
  issue: 7
  year: 2007
  end-page: 2945
  ident: c13-cit-0001
  article-title: Rolling element bearings multi‐fault classification based on the wavelet denoising and support vector machine
  publication-title: Mechanical Systems and Signal Processing
– volume: 18
  start-page: 625
  issue: 3
  year: 2004
  end-page: 644
  ident: c13-cit-0030
  article-title: Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
  publication-title: Mechanical Systems and Signal Processing
– volume: 16
  start-page: 373
  issue: 2–3
  year: 2002
  end-page: 390
  ident: c13-cit-0021
  article-title: Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
  publication-title: Mechanical Systems and Signal Processing
– volume: 20
  start-page: 1523
  issue: 7
  year: 2006
  end-page: 1536
  ident: c13-cit-0029
  article-title: Practical scheme for fast detection and classification of rolling‐element bearing faults using support vector machines
  publication-title: Mechanical Systems and Signal Processing
– year: 1982
  ident: c13-cit-0036
  article-title: Estimation of Dependencies Based on Empirical Data
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  ident: c13-cit-0018
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Transactions on Neural Networks
– volume: 99
  start-page: 399
  year: 2013
  end-page: 410
  ident: c13-cit-0026
  article-title: Multi‐fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
  publication-title: Neurocomputing
– volume: 40
  start-page: 2681
  issue: 8
  year: 2018
  end-page: 2693
  ident: c13-cit-0017
  article-title: Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery
  publication-title: Transactions of the Institute of Measurement and Control
– volume: 6
  start-page: 44731
  year: 2018
  end-page: 44746
  ident: c13-cit-0002
  article-title: Compressive sampling and feature ranking framework for bearing fault classification with vibration signals
  publication-title: IEEE Access
– volume: 62
  start-page: 1
  year: 2014
  end-page: 9
  ident: c13-cit-0035
  article-title: Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
  publication-title: Renewable Energy
– start-page: 144
  year: 1992
  end-page: 152
  ident: c13-cit-0005
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory
– volume: 116
  start-page: 169
  year: 2018
  end-page: 175
  ident: c13-cit-0014
  article-title: A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine
  publication-title: Renewable Energy
– volume: 64
  start-page: 357
  issue: 1
  year: 2013
  end-page: 365
  ident: c13-cit-0012
  article-title: Automatic bearing fault diagnosis based on one‐class ν‐SVM
  publication-title: Computers & Industrial Engineering
– year: 2000
  ident: c13-cit-0007
  article-title: Algorithmic approaches to t‐raining support vector machines: a survey
  publication-title: Proceedings of ESANN 2000, Bruges
– volume: 21
  start-page: 930
  issue: 2
  year: 2007
  end-page: 942
  ident: c13-cit-0033
  article-title: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
  publication-title: Mechanical Systems and Signal Processing
– volume: 224
  start-page: 217
  issue: 1
  year: 2010
  end-page: 229
  ident: c13-cit-0045
  article-title: Fault diagnosis based on support vector machines with parameter optimization by an ant colony algorithm
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  end-page: 2574
  ident: c13-cit-0038
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– year: 1998
  ident: c13-cit-0008
  article-title: Simple Learning Algorithms for Training Support Vector Machines
– volume: 35
  start-page: 89
  issue: 1
  year: 2005
  end-page: 99
  ident: c13-cit-0015
  article-title: Feature generation using genetic programming with application to fault classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics
– volume: 89
  start-page: 56
  year: 2015
  end-page: 85
  ident: c13-cit-0047
  article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble‐based incremental support vector machine
  publication-title: Knowledge‐Based Systems
– volume: 11
  start-page: 4203
  issue: 6
  year: 2011
  end-page: 4211
  ident: c13-cit-0023
  article-title: Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
  publication-title: Applied Soft Computing
– year: 1998
  ident: c13-cit-0027
  article-title: Sequential minimal optimization: A fast algorithm for training support vector machines
– volume: 64
  start-page: 52
  issue: 1
  year: 2015
  end-page: 62
  ident: c13-cit-0032
  article-title: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 94
  start-page: 464
  year: 2017
  end-page: 481
  ident: c13-cit-0013
  article-title: Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass‐support vector machine algorithms
  publication-title: Mechanical Systems and Signal Processing
– year: 1998
  ident: c13-cit-0022
  article-title: Making Large‐Scale SVM Learning Practical
– volume: 38
  start-page: 6980
  issue: 6
  year: 2011
  end-page: 6984
  ident: c13-cit-0003
  article-title: SVM practical industrial application for mechanical faults diagnostic
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 1349
  issue: 9
  year: 2009
  end-page: 1363
  ident: c13-cit-0016
  article-title: Rolling bearing fault classification based on envelope spectrum and support vector machine
  publication-title: Journal of Vibration and Control
– start-page: 153
  year: 2005
  end-page: 158
  ident: c13-cit-0028
  article-title: Detection and classification of rolling‐element bearing faults using support vector machines
  publication-title: 2005 IEEE Workshop on Machine Learning for Signal Processing
– volume: 35
  start-page: 1351
  issue: 3
  year: 2008
  end-page: 1366
  ident: c13-cit-0031
  article-title: A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box
  publication-title: Expert Systems with Applications
– volume: 28
  start-page: 608
  year: 2012
  end-page: 621
  ident: c13-cit-0024
  article-title: Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine
  publication-title: Mechanical Systems and Signal Processing
– volume: 33
  start-page: 241
  issue: 1
  year: 2007
  end-page: 250
  ident: c13-cit-0037
  article-title: Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
  publication-title: Expert Systems with Applications
– volume: 167
  start-page: 260
  year: 2015
  end-page: 279
  ident: c13-cit-0046
  article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
  publication-title: Neurocomputing
– volume: 36
  start-page: 12131
  issue: 10
  year: 2009
  end-page: 12136
  ident: c13-cit-0040
  article-title: An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines
  publication-title: Expert Systems with Applications
– volume: 47
  start-page: 669
  year: 2014
  end-page: 675
  ident: c13-cit-0049
  article-title: A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm
  publication-title: Measurement
– volume: 41
  start-page: 127
  issue: 1–2
  year: 2013
  end-page: 140
  ident: c13-cit-0043
  article-title: Multi‐fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
  publication-title: Mechanical Systems and Signal Processing
– volume: 77
  start-page: 80
  year: 2016
  end-page: 94
  ident: c13-cit-0025
  article-title: A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree
  publication-title: Measurement
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: c13-cit-0006
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– volume: 20
  start-page: 939
  issue: 4
  year: 2006
  end-page: 952
  ident: c13-cit-0042
  article-title: Support vector machines‐based fault diagnosis for turbo‐pump rotor
  publication-title: Mechanical Systems and Signal Processing
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: c13-cit-0011
  article-title: Support‐vector networks
  publication-title: Machine Learning
– volume: 46
  start-page: 220
  issue: 1
  year: 2013
  end-page: 232
  ident: c13-cit-0010
  article-title: A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
  publication-title: Measurement
SSID ssj0002228190
ssib042305207
ssib053741229
Score 1.580205
Snippet Support vector machines (SVMs) are one of the most popular machine learning methods used to classify machine health conditions using the selected feature...
SourceID wiley
ieee
SourceType Enrichment Source
Publisher
StartPage 259
SubjectTerms binary classification problem
feature extraction
feature selection
machine fault diagnosis
multiclass SVM approach
normalisation
support vector machines
SVM classifier
Title Support Vector Machines (SVMs)
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8958818
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119544678.ch13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgcAAulEWUpcoBCRAE2ix1fEaFSqwSpeotShybVqhp1QBCfD0zthNI4cKBi1VZVmrPOKPnF88bQvY9BpExbrVsIQJpe4y3bObgTQCZJJRzgPiqGEzvmt7eBv0-uzeSv5kqJ0DTNHh_Z5N_dTX0gbMxdfYP7i4eCh3wG5wOLbgd2hlEXOZetdjAGD9Bo0v1yzotuNYenot1eBg-oWhy4erBSBOenXEWjQR-jCoYYsx5UdEjGz-LnBHNU0gmCN2Pe4r2xwJGA7xBj4j1oXeT5QyDIRQwh6lEKKhoVDplNpUsnNfSicE_Yq7WcP02jganfKAzTGe0rAPmB4AQ5sk8pRCUFi7bd49X-esPwA4v5dCCIkNyCvCKqu9kZsCMSlcxI5MHBYPPfs7AVMwpnzsUcOiukhVMJrEwywNmWCVzIl0jy99EINdJ3VjS0pa0cktah2jHow3yeNHunndsU7XCHkJ4k7YPAJzJOEkakRfDlucOivg3eQxYG5YoXN7whQvAMGoGQlIXDoCNyEl4xHgccz9yN0klHadii1iUJkL6XCZU-l4MwMEFvCl82oh5M-BOVCNVXF-I2y0LjXFr5EStNhS6W-tSO2HJPCGaRzU1clAaXh72MZzooZNEbv_2bztk6WsP7ZLKy_RV7JFF_vYyzKZ14-FPMGIzcw
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Condition+Monitoring+with+Vibration+Signals&rft.au=Ahmed%2C+Hosameldin&rft.au=Nandi%2C+Asoke+K&rft.atitle=Support+Vector+Machines+%28SVMs%29&rft.date=2019-01-01&rft.pub=Wiley&rft.isbn=9781119544623&rft_id=info:doi/10.1002%2F9781119544678.ch13&rft.externalDocID=8958818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781119544623/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781119544623/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781119544623/sc.gif&client=summon&freeimage=true