The Dalton quantum chemistry program system

Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Computational molecular science Vol. 4; no. 3; pp. 269 - 284
Main Authors: Aidas, Kestutis, Angeli, Celestino, Bak, Keld L., Bakken, Vebjørn, Bast, Radovan, Boman, Linus, Christiansen, Ove, Cimiraglia, Renzo, Coriani, Sonia, Dahle, Pål, Dalskov, Erik K., Ekström, Ulf, Enevoldsen, Thomas, Eriksen, Janus J., Ettenhuber, Patrick, Fernández, Berta, Ferrighi, Lara, Fliegl, Heike, Frediani, Luca, Hald, Kasper, Halkier, Asger, Hättig, Christof, Heiberg, Hanne, Helgaker, Trygve, Hennum, Alf Christian, Hettema, Hinne, Hjertenæs, Eirik, Høst, Stinne, Høyvik, Ida-Marie, Iozzi, Maria Francesca, Jansík, Branislav, Jensen, Hans Jørgen Aa, Jonsson, Dan, Jørgensen, Poul, Kauczor, Joanna, Kirpekar, Sheela, Kjærgaard, Thomas, Klopper, Wim, Knecht, Stefan, Kobayashi, Rika, Koch, Henrik, Kongsted, Jacob, Krapp, Andreas, Kristensen, Kasper, Ligabue, Andrea, Lutnæs, Ola B., Melo, Juan I., Mikkelsen, Kurt V., Myhre, Rolf H., Neiss, Christian, Nielsen, Christian B., Norman, Patrick, Olsen, Jeppe, Olsen, Jógvan Magnus H., Osted, Anders, Packer, Martin J., Pawlowski, Filip, Pedersen, Thomas B., Provasi, Patricio F., Reine, Simen, Rinkevicius, Zilvinas, Ruden, Torgeir A., Ruud, Kenneth, Rybkin, Vladimir V., Sałek, Pawel, Samson, Claire C. M., de Merás, Alfredo Sánchez, Saue, Trond, Sauer, Stephan P. A., Schimmelpfennig, Bernd, Sneskov, Kristian, Steindal, Arnfinn H., Sylvester-Hvid, Kristian O., Taylor, Peter R., Teale, Andrew M., Tellgren, Erik I., Tew, David P., Thorvaldsen, Andreas J., Thøgersen, Lea, Vahtras, Olav, Watson, Mark A., Wilson, David J. D., Ziolkowski, Marcin, Ågren, Hans
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.05.2014
Wiley Subscription Services, Inc
Wiley
Subjects:
ISSN:1759-0876, 1759-0884, 1759-0884
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. This article is categorized under: Software > Quantum Chemistry
AbstractList Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. This article is categorized under: Software > Quantum Chemistry
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.This article is categorized under:Software > Quantum Chemistry
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from www.daltonprogram.org for a number of UNIX platforms.
Author Watson, Mark A.
Ziolkowski, Marcin
Steindal, Arnfinn H.
Ettenhuber, Patrick
Melo, Juan I.
Bak, Keld L.
Heiberg, Hanne
Hjertenæs, Eirik
Kauczor, Joanna
Neiss, Christian
Jensen, Hans Jørgen Aa
Enevoldsen, Thomas
Boman, Linus
Kobayashi, Rika
Høst, Stinne
Sneskov, Kristian
Nielsen, Christian B.
Aidas, Kestutis
Ferrighi, Lara
Jansík, Branislav
de Merás, Alfredo Sánchez
Pawlowski, Filip
Ligabue, Andrea
Provasi, Patricio F.
Sauer, Stephan P. A.
Ågren, Hans
Bast, Radovan
Reine, Simen
Kongsted, Jacob
Christiansen, Ove
Lutnæs, Ola B.
Norman, Patrick
Samson, Claire C. M.
Thøgersen, Lea
Cimiraglia, Renzo
Frediani, Luca
Høyvik, Ida-Marie
Bakken, Vebjørn
Dahle, Pål
Sałek, Pawel
Kirpekar, Sheela
Klopper, Wim
Olsen, Jógvan Magnus H.
Hettema, Hinne
Thorvaldsen, Andreas J.
Taylor, Peter R.
Mikkelsen, Kurt V.
Tew, David P.
Kjærgaard, Thomas
Saue, Trond
Wilson, David J. D.
Angeli, Celestino
Ekström, Ulf
Eriksen, Janus J.
Rinkevicius, Zilvinas
Teale, Andrew M.
Jørgensen, Poul
Iozzi, Maria Francesca
Ruden, Torgeir A.
Sylvester-Hvid, Kristian O.
Hald, Kasper
Fernández
Author_xml – sequence: 1
  givenname: Kestutis
  surname: Aidas
  fullname: Aidas, Kestutis
  organization: Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Vilnius, Lithuania
– sequence: 2
  givenname: Celestino
  surname: Angeli
  fullname: Angeli, Celestino
  organization: Department of Chemistry, University of Ferrara, Ferrara, Italy
– sequence: 3
  givenname: Keld L.
  surname: Bak
  fullname: Bak, Keld L.
  organization: Aarhus University School of Engineering, Aarhus, Denmark
– sequence: 4
  givenname: Vebjørn
  surname: Bakken
  fullname: Bakken, Vebjørn
  organization: Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
– sequence: 5
  givenname: Radovan
  surname: Bast
  fullname: Bast, Radovan
  organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 6
  givenname: Linus
  surname: Boman
  fullname: Boman, Linus
  organization: EMGS ASA, Trondheim, Norway
– sequence: 7
  givenname: Ove
  surname: Christiansen
  fullname: Christiansen, Ove
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 8
  givenname: Renzo
  surname: Cimiraglia
  fullname: Cimiraglia, Renzo
  organization: Department of Chemistry, University of Ferrara, Ferrara, Italy
– sequence: 9
  givenname: Sonia
  surname: Coriani
  fullname: Coriani, Sonia
  organization: Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
– sequence: 10
  givenname: Pål
  surname: Dahle
  fullname: Dahle, Pål
  organization: Norwegian Computing Center, Oslo, Norway
– sequence: 11
  givenname: Erik K.
  surname: Dalskov
  fullname: Dalskov, Erik K.
  organization: Systematic, Aarhus, Denmark
– sequence: 12
  givenname: Ulf
  surname: Ekström
  fullname: Ekström, Ulf
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 13
  givenname: Thomas
  surname: Enevoldsen
  fullname: Enevoldsen, Thomas
  organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
– sequence: 14
  givenname: Janus J.
  surname: Eriksen
  fullname: Eriksen, Janus J.
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 15
  givenname: Patrick
  surname: Ettenhuber
  fullname: Ettenhuber, Patrick
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 16
  givenname: Berta
  surname: Fernández
  fullname: Fernández, Berta
  organization: Department of Physical Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
– sequence: 17
  givenname: Lara
  surname: Ferrighi
  fullname: Ferrighi, Lara
  organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 18
  givenname: Heike
  surname: Fliegl
  fullname: Fliegl, Heike
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 19
  givenname: Luca
  surname: Frediani
  fullname: Frediani, Luca
  organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 20
  givenname: Kasper
  surname: Hald
  fullname: Hald, Kasper
  organization: Danske Bank, Horsens, Denmark
– sequence: 21
  givenname: Asger
  surname: Halkier
  fullname: Halkier, Asger
  organization: CSC Scandihealth, Aarhus, Denmark
– sequence: 22
  givenname: Christof
  surname: Hättig
  fullname: Hättig, Christof
  organization: Department of Theoretical Chemistry, Ruhr-University Bochum, Bochum, Germany
– sequence: 23
  givenname: Hanne
  surname: Heiberg
  fullname: Heiberg, Hanne
  organization: Norwegian Meteorological Institute, Oslo, Norway
– sequence: 24
  givenname: Trygve
  surname: Helgaker
  fullname: Helgaker, Trygve
  email: trygve.helgaker@kjemi.uio.no
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 25
  givenname: Alf Christian
  surname: Hennum
  fullname: Hennum, Alf Christian
  organization: Norwegian Defence Research Establishment, Kjeller, Norway
– sequence: 26
  givenname: Hinne
  surname: Hettema
  fullname: Hettema, Hinne
  organization: Department of Philosophy, The University of Auckland, Auckland, New Zealand
– sequence: 27
  givenname: Eirik
  surname: Hjertenæs
  fullname: Hjertenæs, Eirik
  organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 28
  givenname: Stinne
  surname: Høst
  fullname: Høst, Stinne
  organization: Department of Geoscience, Aarhus University, Aarhus, Denmark
– sequence: 29
  givenname: Ida-Marie
  surname: Høyvik
  fullname: Høyvik, Ida-Marie
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 30
  givenname: Maria Francesca
  surname: Iozzi
  fullname: Iozzi, Maria Francesca
  organization: University Centre of Information Technology, University of Oslo, Oslo, Norway
– sequence: 31
  givenname: Branislav
  surname: Jansík
  fullname: Jansík, Branislav
  organization: VSB - Technical University of Ostrava, Ostrava, Czech Republic
– sequence: 32
  givenname: Hans Jørgen Aa
  surname: Jensen
  fullname: Jensen, Hans Jørgen Aa
  organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
– sequence: 33
  givenname: Dan
  surname: Jonsson
  fullname: Jonsson, Dan
  organization: High-Performance Computing Group, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 34
  givenname: Poul
  surname: Jørgensen
  fullname: Jørgensen, Poul
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 35
  givenname: Joanna
  surname: Kauczor
  fullname: Kauczor, Joanna
  organization: Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
– sequence: 36
  givenname: Sheela
  surname: Kirpekar
  fullname: Kirpekar, Sheela
  organization: KVUC, Copenhagen, Denmark
– sequence: 37
  givenname: Thomas
  surname: Kjærgaard
  fullname: Kjærgaard, Thomas
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 38
  givenname: Wim
  surname: Klopper
  fullname: Klopper, Wim
  organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 39
  givenname: Stefan
  surname: Knecht
  fullname: Knecht, Stefan
  organization: Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
– sequence: 40
  givenname: Rika
  surname: Kobayashi
  fullname: Kobayashi, Rika
  organization: Australian National University Supercomputer Facility, Canberra, Australia
– sequence: 41
  givenname: Henrik
  surname: Koch
  fullname: Koch, Henrik
  organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 42
  givenname: Jacob
  surname: Kongsted
  fullname: Kongsted, Jacob
  organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
– sequence: 43
  givenname: Andreas
  surname: Krapp
  fullname: Krapp, Andreas
  organization: Jotun A/S, Sandefjord, Norway
– sequence: 44
  givenname: Kasper
  surname: Kristensen
  fullname: Kristensen, Kasper
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 45
  givenname: Andrea
  surname: Ligabue
  fullname: Ligabue, Andrea
  organization: Computer Services: Networks and Systems, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 46
  givenname: Ola B.
  surname: Lutnæs
  fullname: Lutnæs, Ola B.
  organization: Cisco Systems, Lysaker, Norway
– sequence: 47
  givenname: Juan I.
  surname: Melo
  fullname: Melo, Juan I.
  organization: Physics Department, FCEyN-UBA and IFIBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
– sequence: 48
  givenname: Kurt V.
  surname: Mikkelsen
  fullname: Mikkelsen, Kurt V.
  organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
– sequence: 49
  givenname: Rolf H.
  surname: Myhre
  fullname: Myhre, Rolf H.
  organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 50
  givenname: Christian
  surname: Neiss
  fullname: Neiss, Christian
  organization: Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 51
  givenname: Christian B.
  surname: Nielsen
  fullname: Nielsen, Christian B.
  organization: Sun Chemical, Køge, Denmark
– sequence: 52
  givenname: Patrick
  surname: Norman
  fullname: Norman, Patrick
  organization: Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
– sequence: 53
  givenname: Jeppe
  surname: Olsen
  fullname: Olsen, Jeppe
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 54
  givenname: Jógvan Magnus H.
  surname: Olsen
  fullname: Olsen, Jógvan Magnus H.
  organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
– sequence: 55
  givenname: Anders
  surname: Osted
  fullname: Osted, Anders
  organization: Køge Gymnasium, Køge, Denmark
– sequence: 56
  givenname: Martin J.
  surname: Packer
  fullname: Packer, Martin J.
  organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
– sequence: 57
  givenname: Filip
  surname: Pawlowski
  fullname: Pawlowski, Filip
  organization: Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland
– sequence: 58
  givenname: Thomas B.
  surname: Pedersen
  fullname: Pedersen, Thomas B.
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 59
  givenname: Patricio F.
  surname: Provasi
  fullname: Provasi, Patricio F.
  organization: Department of Physics, University of Northeastern and IMIT-CONICET, Corrientes, Argentina
– sequence: 60
  givenname: Simen
  surname: Reine
  fullname: Reine, Simen
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 61
  givenname: Zilvinas
  surname: Rinkevicius
  fullname: Rinkevicius, Zilvinas
  organization: Department of Theoretical Chemistry and Biology, School of Biotechnology and Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 62
  givenname: Torgeir A.
  surname: Ruden
  fullname: Ruden, Torgeir A.
  organization: Kjeller Software Community, Oslo, Norway
– sequence: 63
  givenname: Kenneth
  surname: Ruud
  fullname: Ruud, Kenneth
  organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 64
  givenname: Vladimir V.
  surname: Rybkin
  fullname: Rybkin, Vladimir V.
  organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 65
  givenname: Pawel
  surname: Sałek
  fullname: Sałek, Pawel
  organization: PSS9 Development, Cracow, Poland
– sequence: 66
  givenname: Claire C. M.
  surname: Samson
  fullname: Samson, Claire C. M.
  organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 67
  givenname: Alfredo Sánchez
  surname: de Merás
  fullname: de Merás, Alfredo Sánchez
  organization: Institute of Molecular Science, University of Valencia, Valencia, Spain
– sequence: 68
  givenname: Trond
  surname: Saue
  fullname: Saue, Trond
  organization: Paul Sabatier University, Toulouse, France
– sequence: 69
  givenname: Stephan P. A.
  surname: Sauer
  fullname: Sauer, Stephan P. A.
  organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
– sequence: 70
  givenname: Bernd
  surname: Schimmelpfennig
  fullname: Schimmelpfennig, Bernd
  organization: Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 71
  givenname: Kristian
  surname: Sneskov
  fullname: Sneskov, Kristian
  organization: Danske Bank, Aarhus, Denmark
– sequence: 72
  givenname: Arnfinn H.
  surname: Steindal
  fullname: Steindal, Arnfinn H.
  organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 73
  givenname: Kristian O.
  surname: Sylvester-Hvid
  fullname: Sylvester-Hvid, Kristian O.
  organization: Danish Technological Institute Nano- and Microtechnology Production, Taastrup, Denmark
– sequence: 74
  givenname: Peter R.
  surname: Taylor
  fullname: Taylor, Peter R.
  organization: VLSCI and School of Chemistry, University of Melbourne, Parkville, Australia
– sequence: 75
  givenname: Andrew M.
  surname: Teale
  fullname: Teale, Andrew M.
  organization: School of Chemistry, University of Nottingham, Nottingham, UK
– sequence: 76
  givenname: Erik I.
  surname: Tellgren
  fullname: Tellgren, Erik I.
  organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
– sequence: 77
  givenname: David P.
  surname: Tew
  fullname: Tew, David P.
  organization: School of Chemistry, University of Bristol, Bristol, UK
– sequence: 78
  givenname: Andreas J.
  surname: Thorvaldsen
  fullname: Thorvaldsen, Andreas J.
  organization: Department of Chemistry, Aarhus University, Aarhus, Denmark
– sequence: 79
  givenname: Lea
  surname: Thøgersen
  fullname: Thøgersen, Lea
  organization: CLC bio, Aarhus, Denmark
– sequence: 80
  givenname: Olav
  surname: Vahtras
  fullname: Vahtras, Olav
  organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 81
  givenname: Mark A.
  surname: Watson
  fullname: Watson, Mark A.
  organization: Department of Chemistry, Princeton University, New Jersey, Princeton
– sequence: 82
  givenname: David J. D.
  surname: Wilson
  fullname: Wilson, David J. D.
  organization: Department of Chemistry and La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
– sequence: 83
  givenname: Marcin
  surname: Ziolkowski
  fullname: Ziolkowski, Marcin
  organization: CoE for Next Generation Computing, Clemson University, South Carolina, Clemson
– sequence: 84
  givenname: Hans
  surname: Ågren
  fullname: Ågren, Hans
  organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25309629$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01082875$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145261$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106677$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqNkk1vEzEQhi1UREvpgT-AInEBVdt6vF57fakUkpIihSJBoceR1_Fmt92P1N5tyL_Hq5RAe0D44pHnma_X85LsNW1jCXkN9AQoZadrU_sTAMmekQOQiYpomvK9nS3FPjny_oaGwxWwGF6QfZbEVAmmDsjxVWFHU111bTO663XT9fXIFLYufec2o5Vrl07XI7_xna1fkee5rrw9ergPyfeP51eTi2j-ZfZpMp5HhQBgkbUJ00LnRscypaCy3IqM5wvJmVpAnJuE2zzNINc2AVgwHQtqlAlunhkwJj4k0TavX9tVn-HKlbV2G2x1idPyxxhbt8Sq7BGoEFL-H3_bFQg8YQICf7blA1zbhbFN53T1KOyxpykLXLb3yEEOqoYE77cJiidhF-M5Dm8UaMpSmdwPxd49FHPtXW99h0FbY6tKN7btPULKhAAOfJjj7RP0pu1dE6RGRqlUoXum_kWBpDLmTMqBevP3jLsuf_98AE63wLqs7GbnB4rDVuGwVThsFV5PPn8bjD8yh92wP3cR2t2ikLFM8PpyhnSWXn74OlVI41-E2s5C
ContentType Journal Article
Copyright 2013 John Wiley & Sons, Ltd.
2014 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
2013 John Wiley & Sons, Ltd. 2013
Copyright_xml – notice: 2013 John Wiley & Sons, Ltd.
– notice: 2014 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2013 John Wiley & Sons, Ltd. 2013
DBID BSCLL
24P
NPM
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
7X8
1XC
5PM
ADTPV
AOWAS
D8V
DG8
DOI 10.1002/wcms.1172
DatabaseName Istex
Wiley Online Library : Open Access journals [open access]
PubMed
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Linköpings universitet
DatabaseTitle PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage 284
ExternalDocumentID oai_DiVA_org_liu_106677
oai_DiVA_org_kth_145261
PMC4171759
oai:HAL:hal-01082875v1
3788619191
25309629
WCMS1172
ark_67375_WNG_0G8NBRD9_0
Genre article
Journal Article
GroupedDBID 05W
0R~
1OC
1VH
31~
33P
8-0
8-1
AAESR
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
ZZTAW
~S-
24P
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALUQN
WYJ
NPM
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
7X8
1XC
5PM
ADTPV
AOWAS
D8V
DG8
ID FETCH-LOGICAL-h6112-ee52a6afca378019bfe6b4fd7429d13fc54ef8b1fae511d2a360c9c7424bc1cc3
IEDL.DBID 24P
ISICitedReferencesCount 1433
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334522200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
1759-0884
IngestDate Tue Nov 04 16:52:16 EST 2025
Tue Nov 04 17:20:10 EST 2025
Tue Nov 04 01:52:36 EST 2025
Sat Oct 25 06:47:27 EDT 2025
Fri Sep 05 06:07:02 EDT 2025
Fri Jul 25 10:42:37 EDT 2025
Fri Jul 25 10:40:01 EDT 2025
Mon Jul 21 05:51:15 EDT 2025
Wed Jan 22 16:32:03 EST 2025
Tue Nov 11 03:32:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h6112-ee52a6afca378019bfe6b4fd7429d13fc54ef8b1fae511d2a360c9c7424bc1cc3
Notes ark:/67375/WNG-0G8NBRD9-0
ArticleID:WCMS1172
istex:EF8B98DB37DF65E8E21DA2DC57826D136FE389A7
The authors have declared no conflicts of interest in relation to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC4171759
ORCID 0000-0001-6407-0305
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1172
PMID 25309629
PQID 1707342779
PQPubID 2034594
PageCount 16
ParticipantIDs swepub_primary_oai_DiVA_org_liu_106677
swepub_primary_oai_DiVA_org_kth_145261
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4171759
hal_primary_oai_HAL_hal_01082875v1
proquest_miscellaneous_1826614147
proquest_journals_2007945229
proquest_journals_1707342779
pubmed_primary_25309629
wiley_primary_10_1002_wcms_1172_WCMS1172
istex_primary_ark_67375_WNG_0G8NBRD9_0
PublicationCentury 2000
PublicationDate May/June 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May/June 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
– name: Oxford, UK
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationTitleAlternate WIREs Comput Mol Sci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Kongsted J, Osted A, Mikkelsen KV, Christiansen O. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J Chem Phys 2003, 118:1620-1633.
Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P. Molecular Hessians for large-scale MCSCF wave functions. J Chem Phys 1986, 84:6266-6279.
Mikkelsen KV, Cesar A, Ågren H, Jensen HJAa. Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation. J Chem Phys 1995, 103: 9010-9023.
Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys 2002, 117:13-26.
Vahtras O, Rinkevicius Z. General excitations in time-dependent density functional theory. J Chem Phys 2007, 126:114101.
Mikkelsen KV, Jørgensen P, Jensen HJAa. A multiconfiguration self consistent reaction field response method. J Chem Phys 1994, 100:6597-6607.
Olsen JMH, Kongsted J. Molecular properties through polarizable embedding. Adv Quantum Chem 2011, 61:107-143.
Christiansen O, Mikkelsen KV. Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. J Chem Phys 1999, 110:8348-8360.
Reine S, Krapp A, Iozzi MF, Bakken V, Helgaker T, Pawłowski F, Sałek P. An efficient density-functional-theory force evaluation for large molecular systems. J Chem Phys 2010, 133:044102.
Hättig C, Christiansen O, Coriani S, Jørgensen P. Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory. J Chem Phys 1994, 109:9237-9243.
Kristensen K, Kauczor J, Kjærgaard T, Jørgensen P. Quasi-energy formulation of damped response theory. J Chem Phys 2009, 131:044112.
Kauczor J, Jørgensen P, Norman P. On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations. J Chem Theory Comput 2011, 7:1610-1630.
Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss 1994, 99:165-180.
Hald K, Jørgensen P, Christiansen O, Koch H. Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections. J Chem Phys 2002, 116:5963-5970.
Watson MA, Sałek P, Macak P, Helgaker T. Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. J Chem Phys 2004, 121:2915-2931.
Rinkevicius Z, Vahtras O, Ågren H. Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 2010, 133:114104.
Koch H, Christiansen O, Kobayashi R, Jørgensen P, Helgaker T. A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem Phys Lett 1994, 228:233-238.
Ruud K, Helgaker T, Kobayashi R, Jørgensen P, Bak KL, Jensen HJAa. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals. J Chem Phys 1994, 100:8178-8185.
Watson MA, Sałek P, Macak P, Jaszuński M, Helgaker T. The calculation of indirect nuclear spin-spin coupling constants in large molecules. Chem Eur J 2004, 10:4627-4639.
Jonsson D, Norman P, Ågren H. Cubic response functions in the multiconfiguration self-consistent field approximation. J Chem Phys 1996, 105:6401-6419.
Jonsson D, Norman P, Luo Y, Ågren H. Response theory for static and dynamic polarizabilities of excited states. J Chem Phys 1996, 105:581-587.
Ruud K, Schimmelpfennig B, Ågren H. Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett 1999, 310:215-221.
Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. Making the random phase approximation to electronic correlation accurate. J Chem Phys 2009, 131:154115.
Hättig C, Christiansen O, Koch H, Jørgensen P. Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory. Chem Phys Lett 1997, 269:428-434.
Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H. Nonlinear optical response of molecules in a nonequilibrium solvation model. J Chem Phys 1998, 109:5576-5584.
Tunell I, Rinkevicius Z, Vahtras O, Sałek P, Helgaker T, Ågren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence. J Chem Phys 2003, 119:11024-11034.
Eriksen JJ, Sauer SPA, Mikkelsen KV, Jensen HJAa, Kongsted J. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. J Comput Chem 2012, 33:2012-2022.
Kristensen K, Høyvik I-M, Jansík B, Jørgensen P, Kjærgaard T, Reine S, Jakowski J. MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys Chem Chem Phys 2012, 14:15706-15714.
Coriani S, Kjærgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp 2010, 6, 1020-1047.
Ruud K, Åstrand, P-O, Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys 2000, 112:2668-2683.
Luo Y, Vahtras O, Ågren H, Jørgensen P. Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O. Chem Phys Lett 1993, 204:587-594.
Pedersen TB, Sánchez de Merás AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys 2004, 120:8887-8897.
Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC. Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 2006, 8:558-562.
Cacheiro JL, Pedersen TB, Fernández B, Sánchez de Merás A, Koch H. The CCSD(T) model with Cholesky decomposition of orbital energy denominators. Int J Quantum Chem 2011, 111:349-355.
Ruud K, Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002, 352:533-539.
Coriani S, Helgaker T, Jørgensen P, Klopper W. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. J Chem Phys 2004, 121:6591-6598.
Osted A, Kongsted J, Mikkelsen KV, Christiansen O. A CC2 dielectric continuum model and a CC2 molecular mechanics model. Mol Phys 2003, 101:2055-2071.
Teale AM, De Proft F, Tozer DJ. Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 2008, 129:044110.
Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P: Variational and robust density fitting of four-center two-electron integrals in local metrics. J Chem Phys 2008, 129:104101.
Solheim H, Ruud K, Coriani S, Norman P. Complex polarization propagator calculations of magnetic circular dichroism spectra. J Chem Phys 2008, 128:094103.
Vahtras O, Minaev B, Ågren H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett 1998, 281:186-192.
Mikkelsen KV, Jørgensen P, Ruud K, Helgaker T. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. J Chem Phys 1997, 106:1170-1180.
Ziólkowski M, Jansík B, Kjærgaard T, Jørgensen P. Linear scaling coupled-cluster method with correlation energy based error control. J Chem Phys 2010, 133:014107.
Rybkin VV, Simakov AO, Bakken V, Reine SS, Kjærgaard T, Helgaker T, Uggerud E. Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics. J Comput Chem 2013, 34:533-544.
Hättig C, Christiansen O, Jørgensen P. Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. J Chem Phys 1998, 108:8355-8359.
Helgaker T, Taylor PR, HERMIT, A Molecular Integral Code. University of Oslo, Oslo, Norway; 1986.
Helgaker T, Watson M, Handy NC. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 2000, 113:9402-9409.
Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H. Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes. Chem Phys Lett 1996 253:1-7.
Rizzo A, Ågren H. Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys 2013, 15:1198-1207.
Coriani S, Fransson T, Christiansen O, Norman P. Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory. J Chem Theory Comput 2012, 8:1616-1628.
Helgaker T. Transition-state optimizations by trust-region image minimization. Chem Phys Lett 1991, 182:503-510.
Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys 2000, 112:4173-4185.
Hennum AC, Helgaker T, Klopper W. Parity-violating interaction in H2O2 calculated from density-functional theory. Chem Phys Lett 2002, 354:274-282.
Gauss J, Ruud K, Helgaker T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys 1996, 105:2804-2812.
Høyvik I-M, Jansík B, Jørgensen P. Trust region minimization of orbital localization functions. J Chem Theory Comput 2012, 8:3137-3146.
Sánchez de Merás AMJ, Koch H, Cuesta IG, Boman L. Cholesky decomposition-based definition of atomic subsystems in electronic struct
16321072 - J Chem Phys. 2005 Nov 15;123(19):194103
19063545 - J Chem Phys. 2008 Dec 7;129(21):214108
18331083 - J Chem Phys. 2008 Mar 7;128(9):094103
15473713 - J Chem Phys. 2004 Oct 8;121(14):6591-8
18190186 - J Chem Phys. 2008 Jan 7;128(1):014108
19045005 - J Chem Phys. 2008 Sep 28;129(12):124106
21405157 - J Chem Phys. 2011 Mar 14;134(10):104108
24006965 - J Chem Phys. 2013 Aug 28;139(8):081101
21766930 - J Chem Phys. 2011 Jul 14;135(2):024112
21599041 - J Chem Phys. 2011 May 21;134(19):194104
18681637 - J Chem Phys. 2008 Jul 28;129(4):044110
22236047 - Chem Rev. 2012 Jan 11;112(1):543-631
15485221 - J Chem Phys. 2004 Oct 22;121(16):7614-23
23108605 - J Comput Chem. 2013 Mar 15;34(7):533-44
17461618 - J Chem Phys. 2007 Apr 21;126(15):154111
15291602 - J Chem Phys. 2004 Aug 15;121(7):2915-31
20568855 - J Chem Phys. 2009 Oct 21;131(15):154115
17381190 - J Chem Phys. 2007 Mar 21;126(11):114101
16365846 - J Comput Chem. 2006 Feb;27(3):326-33
26593655 - J Chem Theory Comput. 2012 May 8;8(5):1616-28
19475173 - Phys Chem Chem Phys. 2009 Jun 14;11(22):4539-48
20687628 - J Chem Phys. 2010 Jul 28;133(4):044102
16689563 - J Chem Phys. 2006 May 7;124(17):174103
26613143 - J Chem Theory Comput. 2009 Aug 11;5(8):1997-2020
20614959 - J Chem Phys. 2010 Jul 7;133(1):014107
26596429 - J Chem Theory Comput. 2011 Jun 14;7(6):1610-30
15378642 - Chemistry. 2004 Sep 20;10(18):4627-39
23090588 - Phys Chem Chem Phys. 2012 Dec 5;14(45):15706-14
17430011 - J Chem Phys. 2007 Apr 7;126(13):134102
19044902 - J Chem Phys. 2008 Sep 14;129(10):104101
19787935 - Phys Chem Chem Phys. 2005 Apr 21;7(8):1747-58
17628096 - J Phys Chem B. 2007 Aug 2;111(30):8965-73
20515086 - J Chem Phys. 2010 May 28;132(20):204105
15267321 - J Chem Phys. 2004 Mar 8;120(10):4619-25
15538844 - J Chem Phys. 2004 Nov 15;121(19):9239-46
15267824 - J Chem Phys. 2004 May 15;120(19):8887-97
19655842 - J Chem Phys. 2009 Jul 28;131(4):044112
15740310 - J Chem Phys. 2005 Feb 1;122(5):54107
17155244 - Phys Rev Lett. 2006 Oct 6;97(14):143001
26605725 - J Chem Theory Comput. 2012 Sep 11;8(9):3137-46
16482297 - Phys Chem Chem Phys. 2006 Feb 7;8(5):558-62
22998244 - J Chem Phys. 2012 Sep 21;137(11):114102
17461615 - J Chem Phys. 2007 Apr 21;126(15):154108
20866123 - J Chem Phys. 2010 Sep 21;133(11):114104
22685085 - J Comput Chem. 2012 Sep 30;33(25):2012-22
18247941 - J Chem Phys. 2008 Jan 28;128(4):044118
23223557 - Phys Chem Chem Phys. 2013 Jan 28;15(4):1198-207
17431520 - Phys Chem Chem Phys. 2007 Apr 28;9(16):1921-30
19842498 - Phys Chem Chem Phys. 2009 Jul 21;11(27):5805-13
17381199 - J Chem Phys. 2007 Mar 21;126(11):114110
16238384 - J Chem Phys. 2005 Oct 8;123(14):144117
References_xml – reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Padkjær SB, Helgaker T. Indirect nuclear spin-spin coupling constants from multiconfiguration linear response theory. J Chem Phys 1992, 96:6120-6125.
– reference: Hättig C, Christiansen O, Koch H, Jørgensen P. Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory. Chem Phys Lett 1997, 269:428-434.
– reference: Vahtras O, Loboda O, Minaev B, Ågren H, Ruud K. Ab initio calculations of zero-field splitting parameters. Chem Phys 2002, 279:133-142.
– reference: Norman P, Bishop DM, Jensen HJAa, Oddershede J. Nonlinear response theory with relaxation: the first-order hyperpolarizability. J Chem Phys 2005, 123:194103.
– reference: Osted A, Kongsted J, Mikkelsen KV, Christiansen O. A CC2 dielectric continuum model and a CC2 molecular mechanics model. Mol Phys 2003, 101:2055-2071.
– reference: Mikkelsen KV, Jørgensen P, Ruud K, Helgaker T. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. J Chem Phys 1997, 106:1170-1180.
– reference: Helgaker T, Taylor PR, HERMIT, A Molecular Integral Code. University of Oslo, Oslo, Norway; 1986.
– reference: Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. Making the random phase approximation to electronic correlation accurate. J Chem Phys 2009, 131:154115.
– reference: Kristensen K, Høyvik I-M, Jansík B, Jørgensen P, Kjærgaard T, Reine S, Jakowski J. MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys Chem Chem Phys 2012, 14:15706-15714.
– reference: Reine S, Krapp A, Iozzi MF, Bakken V, Helgaker T, Pawłowski F, Sałek P. An efficient density-functional-theory force evaluation for large molecular systems. J Chem Phys 2010, 133:044102.
– reference: Helgaker TU, Jensen HJAa, Jørgensen P. Analytical calculation of MCSCF dipole-moment derivatives. J Chem Phys 1986, 84:6280-6284.
– reference: Sałek P, Vahtras O, Helgaker T, Ågren H. Density-functional theory of linear and nonlinear time-dependent molecular properties. J Chem Phys 2002, 117:9630-9645.
– reference: Bakken V, Helgaker T. The efficient optimization of molecular geometries using redundant internal coordinates. J Chem Phys 2002, 117:9160-9174.
– reference: Steindal AH, Olsen JMH, Frediani L, Kongsted J, Ruud K. Parallelization of the polarizable embedding scheme for higher-order response functions. Mol Phys 2012, 110:2579-2586.
– reference: Olsen J, Roos BO, Jørgensen P, Jensen HJAa. Determinant based algorithms for complete and restricted configuration interaction spaces. J Chem Phys 1988, 89:2185-2192.
– reference: Cesar A, Ågren H, Helgaker T, Jørgensen P, Jensen HJAa. Excited state structures and vibronic spectra of H2CO+, HDCO+ and D2CO+ using molecular gradient and Hessian techniques. J Chem Phys 1991, 95:5906-5917.
– reference: Rybkin VV, Simakov AO, Bakken V, Reine SS, Kjærgaard T, Helgaker T, Uggerud E. Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics. J Comput Chem 2013, 34:533-544.
– reference: Hättig C, Christiansen O, Jørgensen P. Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. J Chem Phys 1998, 108:8355-8359.
– reference: Mikkelsen KV, Ågren H, Jensen HJAa, Helgaker T. A multiconfigurational self-consistent reaction-field method. J Chem Phys 1988, 89:3086-3095.
– reference: Oprea O, Telyatnyk L, Rinkevicius Z, Vahtras O, Ågren H. Time-dependent density functional theory with the generalized restricted-unrestricted approach. J Chem Phys 2006, 124:174103.
– reference: Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys 2002, 117:13-26.
– reference: Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC. Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 2006, 8:558-562.
– reference: Jonsson D, Norman P, Luo Y, Ågren H. Response theory for static and dynamic polarizabilities of excited states. J Chem Phys 1996, 105:581-587.
– reference: Ågren H, Jensen HJAa. An efficient method for calculation of generalized overlap amplitudes for core photoelectron shake-up spectra. Chem Phys Lett 1987, 137:431-436.
– reference: Kjærgaard T, Kristensen K, Kauczor J, Jørgensen P, Coriani S, Thorvaldsen AJ. Comparison of standard and damped response formulations of magnetic circular dichroism. J Chem Phys 2011, 135:024112
– reference: Samson CCM, Klopper W, Helgaker, T. Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12 exp(−γ r212). Comp Phys Commun 2002, 149:1-10.
– reference: Høst S, Olsen J, Jansík B, Thøgersen L, Jørgensen P, Helgaker T. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. J Chem Phys 2008, 129:124106.
– reference: Ochsenfeld C, White CA, Head-Gordon M. Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices. J Chem Phys 1998, 109:1663-1669.
– reference: Olsen JMH, Kongsted J. Molecular properties through polarizable embedding. Adv Quantum Chem 2011, 61:107-143.
– reference: Kongsted J, Osted A, Mikkelsen KV, Christiansen O. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J Chem Phys 2003, 118:1620-1633.
– reference: Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H. Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes. Chem Phys Lett 1996 253:1-7.
– reference: Sałek P, Høst S, Thøgersen L, Jørgensen P, Manninen P, Olsen J, Jansík B, Reine S, Pawłowski F, Tellgren E, Helgaker T, Coriani S. Linear-scaling implementation of molecular electronic self-consistent field theory. J Chem Phys 2007, 126:114110.
– reference: Vahtras O, Minaev B, Ågren H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett 1998, 281:186-192.
– reference: Pedersen TB, Sánchez de Merás AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys 2004, 120:8887-8897.
– reference: Fernández B, Jørgensen P, Byberg J, Olsen J, Helgaker T, Jensen HJAa. Spin polarization in restricted electronic structure theory: multiconfiguration self-consistent-field calculations of hyperfine coupling constants. J Chem Phys 1992, 97:3412-3419.
– reference: Olsen JM, Aidas K, Kongsted J. Excited states in solution through polarizable embedding. J Chem Theory Comput 2010, 6:3721-3734.
– reference: Cammi R, Frediani L, Mennucci B, Ruud K. Multiconfigurational self-consistent field linear response for the polarizable continuum model: theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution. J Chem Phys 2003, 119:5818-5827.
– reference: Christiansen O, Hättig C, Jørgensen P. Response functions from Fourier component perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem 1998, 68:1-52.
– reference: Fernández B, Christensen O, Bludsky O, Jørgensen P, Mikkelsen KV. Theory of hyperfine coupling constants of solvated molecules: applications involving methyl and ClO2 radicals in different solvents. J Chem Phys 1996, 104:629-635.
– reference: Teale AM, De Proft F, Tozer DJ. Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 2008, 129:044110.
– reference: Helgaker T, Watson M, Handy NC. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 2000, 113:9402-9409.
– reference: Luo Y, Vahtras O, Ågren H, Jørgensen P. Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O. Chem Phys Lett 1993, 204:587-594.
– reference: Ahrén M, Selegård L, Söderlind F, Linares M, Kauczor J, Norman P, Käll P-O, Uvdal K. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study. J Nanopart Res 2012, 14:1006.
– reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Spin-orbit coupling constants in a multiconfiguration linear response approach. J Chem Phys 1992, 96:2118-2126.
– reference: Christiansen O, Mikkelsen KV. A coupled-cluster solvent reaction field method. J Chem Phys 1999, 110:1365-1375.
– reference: Ekström U, Norman P, Carravetta V, Ågren H. Polarization propagator for X-ray spectra. Phys Rev Lett 2006, 97:143001.
– reference: Ruud K, Åstrand, P-O, Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys 2000, 112:2668-2683.
– reference: Gauss J, Ruud K, Helgaker T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys 1996, 105:2804-2812.
– reference: Jensen HJAa, Ågren H. A direct, restricted-step, 2nd-order MC SCF program for large-scale ab initio calculations. Chem Phys 1986, 104:229-250.
– reference: Ruud K, Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002, 352:533-539.
– reference: Ziólkowski M, Jansík B, Kjærgaard T, Jørgensen P. Linear scaling coupled-cluster method with correlation energy based error control. J Chem Phys 2010, 133:014107.
– reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Multiconfigurational quadratic response functions for singlet and triplet perturbations: the phosphorescence lifetime of formaldehyde. J Chem Phys 1992, 97:9178-9187.
– reference: Helgaker T, Jensen HJAa, Jørgensen, P, Olsen, J, Taylor PR. ABACUS, A Molecular Property Code. University of Oslo, Oslo, Norway; 1986.
– reference: Høyvik I-M, Jansík B, Jørgensen P. Trust region minimization of orbital localization functions. J Chem Theory Comput 2012, 8:3137-3146.
– reference: Christiansen O, Koch H, Halkier A, Jørgensen P, Helgaker T, Sánchez de Merás A. Large-scale calculations of excitation energies in coupled cluster theory: the singlet excited states of benzene. J Chem Phys 1996, 105:6921-6939.
– reference: Halkier A, Koch H, Christiansen O, Jørgensen P, Helgaker T. First-order one-electron properties in the integral-direct coupled cluster singles and doubles model. J Chem Phys 1997, 107:849-866.
– reference: Kauczor J, Jørgensen P, Norman P. On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations. J Chem Theory Comput 2011, 7:1610-1630.
– reference: Koch H, Sánchez de Merás A, Pedersen TB. Reduced scaling in electronic structure calculations using Cholesky decompositions. J Chem Phys 2003, 118:9481-9484.
– reference: Hettema H, Jensen HJAa, Jørgensen P, Olsen J. Quadratic response functions for a multiconfigurational self-consistent field wave-function. J Chem Phys 1992, 97:1174-1190.
– reference: Jiemchooroj A, Norman P. Electronic circular dichroism spectra from the complex polarization propagator. J Chem Phys 2007, 126: 134102.
– reference: Ferrighi L, Frediani L, Ruud K. Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. J Phys Chem B 2007, 111:8965-8973.
– reference: Kjærgaard T, Jørgensen P, Thorvaldsen AJ, Salek P, Coriani S. Gauge-origin independent formulation and implementation of magneto-optical activity within atomic-orbital-density based Hartree-Fock and Kohn-Sham response theories. J Chem Theory Comp 2009, 5:1997-2020.
– reference: Bak KL, Sauer SPA, Oddershede J, Ogilvie JF. The vibrational g factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra. Phys Chem Chem Phys 2005, 7:1747-1758.
– reference: Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H. Nonlinear optical response of molecules in a nonequilibrium solvation model. J Chem Phys 1998, 109:5576-5584.
– reference: Mohammed A, Ågren H, Norman P. Resonance enhanced Raman scattering from the complex electric-dipole polarizability: a theoretical study on N2. Chem Phys Lett 2009, 468:119-123.
– reference: Hennum AC, Helgaker T, Klopper W. Parity-violating interaction in H2O2 calculated from density-functional theory. Chem Phys Lett 2002, 354:274-282.
– reference: Peach MJG, Benfield P, Helgaker T, Tozer DJ. Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 2008, 128:044118.
– reference: Coriani S, Høst S, Jansík B, Thøgersen L, Olsen J, Jørgensen P, Reine S, Pawłowski F, Helgaker T, Sałek P. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. J Chem Phys 2007, 126:154108.
– reference: Mikkelsen KV, Jørgensen P, Jensen HJAa. A multiconfiguration self consistent reaction field response method. J Chem Phys 1994, 100:6597-6607.
– reference: Vahtras O, Rinkevicius Z. General excitations in time-dependent density functional theory. J Chem Phys 2007, 126:114101.
– reference: Tew DP, Klopper W, Neiss C, Hättig C. Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets. Phys Chem Chem Phys 2007, 9:1921-1930.
– reference: Jensen HJAa, Jørgensen P, Helgaker T. Systematic determination of MCSCF equilibrium and transition structures and reaction paths. J Chem Phys 1986, 85:3917-3929.
– reference: Christiansen O, Mikkelsen KV. Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. J Chem Phys 1999, 110:8348-8360.
– reference: Tunell I, Rinkevicius Z, Vahtras O, Sałek P, Helgaker T, Ågren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence. J Chem Phys 2003, 119:11024-11034.
– reference: Jansík B, Rizzo A, Ågren H. Response theory calculations of two-photon circular dichroism. Chem Phys Lett 2005, 414:461-467.
– reference: Koch H, Sánchez de Merás A, Helgaker T, Christiansen O. The integral-direct coupled cluster singles and doubles model. J Chem Phys 1996, 104:4157-4165.
– reference: Ruud K, Helgaker T, Kobayashi R, Jørgensen P, Bak KL, Jensen HJAa. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals. J Chem Phys 1994, 100:8178-8185.
– reference: Jansík B, Høst S, Johansson MP, Olsen J, Jørgensen P, Helgaker T. A stepwise atomic, valence-molecular, and full-molecular optimisation of the Hartree-Fock/Kohn-Sham energy. Phys Chem Chem Phys 2009, 11:5805-5813.
– reference: Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP, Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 2001, 114:10252-10264.
– reference: Norman P, Bishop DM, Jensen HJAa, Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J Chem Phys 2001, 115:10323-10334.
– reference: Fossgård E, Ruud K. Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals. J Comput Chem 2006, 27:326-333.
– reference: Knecht S, Jensen HJAa, Fleig T. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+. J Chem Phys 2008, 128:014108.
– reference: Coriani S, Fransson T, Christiansen O, Norman P. Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory. J Chem Theory Comput 2012, 8:1616-1628.
– reference: Christiansen O, Koch H, Jørgensen P. Response functions in the CC3 iterative triple excitation model. J Chem Phys 1995, 103:7429-7441.
– reference: Jansík B, Sałek P, Jonsson D, Vahtras O, Ågren H. Cubic response functions in time-dependent density functional theory. J Chem Phys 2005, 122:054107.
– reference: White CA, Johnson BG, Gill PMW, Head-Gordon M. The continuous fast multipole method. Chem Phys Lett 1994 230:8-16.
– reference: Christiansen O, Koch H, Jørgensen P. The second order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett 1995, 243:409-418.
– reference: Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T. Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties. J Chem Phys 1998, 108:2801-2816.
– reference: Bak KL, Hansen AaE, Ruud R, Helgaker T, Olsen J, Jørgensen P. Ab-initio calculation of electronic circular dichroism for trans-cyclooctene using London atomic orbitals. Theor Chim Acta 1995, 90:441-458.
– reference: Rinkevicius Z, Telyatnyk L, Vahtras O, Ågren H. Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. J Chem Phys 2004, 121:7614-7623.
– reference: Mikkelsen KV, Sylvester-Hvid KO. A molecular response method for solvated molecules in nonequlibrium solvation. J Phys Chem 1996, 100:9116-9126.
– reference: Kongsted J, Osted A, Mikkelsen KV, Christiansen O. The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Mol Phys 2002, 100:1813-1828.
– reference: Hättig C, Christiansen O, Jørgensen P. Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory. Chem Phys Lett 1998, 282:139-146.
– reference: Jørgensen P, Jensen HJAa, Olsen J. RESPONS, A Molecular Response Code. Aarhus University, Aarhus, Denmark; 1988.
– reference: Olsen J. The initial implementation and applications of a general active space coupled cluster method. J Chem Phys 2000, 113:7140-7148.
– reference: Olsen J, LUCITA, A General Active Configuration Interaction Code. Aarhus University, Aarhus, Denmark; 2000.
– reference: Jensen HJAa, Jørgensen P, Ågren H, Olsen J. 2nd-order Møller-Plesset perturbation-theory as a configuration and orbital generator in multiconfiguration self-consistent-field calculations. J Chem Phys 1988, 88:3834-3839 and 89:5354-5354.
– reference: Sánchez de Merás AMJ, Koch H, Cuesta IG, Boman L. Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations. J Chem Phys 2010, 132:204105.
– reference: Cronstrand P, Jansík B, Jonsson D, Luo Y, Ågren H. Density functional theory calculations of three-photon absorption. J Chem Phys 2004, 121:9239-9246.
– reference: Vahtras O, Ågren H, Carravetta V. Natural circular dichroism in non-resonant X-ray emission. J Phys B 1997, 30:1493-1501.
– reference: Åstrand P-O, Ruud K, Taylor PR. Calculation of the vibrational wave function of polyatomic molecules. J Chem Phys 2000, 112:2655-2667.
– reference: Luo Y, Vahtras O, Gel'mukhanov F, Ågren H. Theory of natural circular dichroism in X-ray Raman scattering from molecules. Phys Rev A 1997, 55:2716-2722.
– reference: Ruud K, Helgaker T, Bak KL, Jørgensen P, Jensen HJAa. Hartree-Fock limit magnetizabilities from London orbitals. J Chem Phys 1993, 99:3847-3859.
– reference: Klopper W, Samson CCM. Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets. J Chem Phys 2002, 116:6397-6410.
– reference: Jensen HJAa, Ågren H. MCSCF optimization using the direct, restricted step, second order norm-extended optimization method. Chem Phys Lett 1984, 110:140-144.
– reference: Christiansen O, Koch H, Jørgensen P. Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies. J Chem Phys 1996, 105:1451-1459.
– reference: Watson MA, Sałek P, Macak P, Jaszuński M, Helgaker T. The calculation of indirect nuclear spin-spin coupling constants in large molecules. Chem Eur J 2004, 10:4627-4639.
– reference: Sałek P, Vahtras O, Guo J, Luo Y, Helgaker T, Ågren H. Calculations of two-photon absorption cross sections by means of density-functional theory. Chem Phys Lett 2003, 374:446-452.
– reference: Ruden TA, Taylor PR, Helgaker T. Automated calculation of fundamental frequencies: application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method. J Chem Phys 2003, 119:1951-1960.
– reference: Havenith RWA, Taylor PR, Angeli C, Cimiraglia R, Ruud K. Calibration of the n-electron valence state perturbation theory approach. J Chem Phys 2004, 120:4619-4625.
– reference: Ruud K, Schimmelpfennig B, Ågren H. Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett 1999, 310:215-221.
– reference: Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism. J Chem Phys 1993, 98:8873-8887.
– reference: Norman P, Ågren H. Geometry optimization of core electron excited molecules. J Mol Struct: THEOCHEM 1997, 401:107-115.
– reference: Mikkelsen KV, Cesar A, Ågren H, Jensen HJAa. Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation. J Chem Phys 1995, 103: 9010-9023.
– reference: Frediani L, Ågren H, Ferrighi L, Ruud K. Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. J Chem Phys 2005, 123:144117.
– reference: Helgaker T, Uggerud E, Jensen HJAa. Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation. Chem Phys Lett 1990, 173:145-150.
– reference: Ligabue A, Sauer SPA, Lazzeretti P. Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. J Chem Phys 2003, 118:6830-6845.
– reference: Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss 1994, 99:165-180.
– reference: Norman P, Jonsson D, Vahtras O, Ågren H. Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation. Chem Phys 1996, 203, 23-42.
– reference: Thorvaldsen AJ, Ruud K, Kristensen K, Jørgensen P, Coriani S. A density matrix-based quasi-energy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. J Chem Phys 2008, 129:214108.
– reference: Solheim H, Ruud K, Coriani S, Norman P. Complex polarization propagator calculations of magnetic circular dichroism spectra. J Chem Phys 2008, 128:094103.
– reference: Hald, K, Halkier A, Jørgensen P, Coriani S, Hättig C, Helgaker T. A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients. J Chem Phys 2003, 118:2985-2998.
– reference: Rekkedal J, Coriani S, Iozzi MF, Teale AM, Helgaker T, Pedersen TB. Communcation: analytic gradients in the random-phase approximation. J Chem Phys 2013, 139:081101.
– reference: Koch H, Christiansen O, Kobayashi R, Jørgensen P, Helgaker T. A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem Phys Lett 1994, 228:233-238.
– reference: Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent advances in wave function-based methods of molecular-property calculations. Chem Rev 2012, 112:543-631.
– reference: Kristensen K, Kauczor J, Kjærgaard T, Jørgensen P. Quasi-energy formulation of damped response theory. J Chem Phys 2009, 131:044112.
– reference: Christiansen O, Bak KL, Koch H, Sauer SPA. A second-order doubles correction to excitation energies in the random phase approximation. Chem Phys Lett 1998, 284:47-55.
– reference: Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P. Molecular Hessians for large-scale MCSCF wave functions. J Chem Phys 1986, 84:6266-6279.
– reference: Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys 2000, 112:4173-4185.
– reference: Pedersen TB, Koch H. Coupled cluster response functions revisited. J Chem Phys 1997, 106:8059-8072.
– reference: Coriani S, Kjærgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp 2010, 6, 1020-1047.
– reference: Jensen HJAa, Jørgensen P, Ågren H. Efficient optimization of large-scale MCSCF wave-functions with a restricted step algorithm. J Chem Phys 1987, 87:451-466.
– reference: Helgaker T. Transition-state optimizations by trust-region image minimization. Chem Phys Lett 1991, 182:503-510.
– reference: Coriani S, Christiansen O, Fransson T, Norman P. Coupled-cluster response theory for near-edge X-ray-absorption fine structure of atoms and molecules. Phys Rev A 2012, 85:022507.
– reference: Coriani S, Helgaker T, Jørgensen P, Klopper W. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. J Chem Phys 2004, 121:6591-6598.
– reference: Enevoldsen T, Oddershede J, Sauer SPA. Correlated calculations of indirect nuclear spin-spin coupling constants using second order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theor Chem Acc 1998, 100:275-284.
– reference: Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P: Variational and robust density fitting of four-center two-electron integrals in local metrics. J Chem Phys 2008, 129:104101.
– reference: Jansík B, Høst S, Kristensen K, Jørgensen P. Local orbitals by minimizing powers of the orbital variance. J Chem Phys 2011, 134:194104.
– reference: Helgaker T, Wilson PJ, Amos RD, Handy NC. Nuclear shielding constants by density functional theory with gauge including atomic orbitals. J Chem Phys 2000, 113:2983-2989.
– reference: Dyall KG. The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J Chem Phys 1995, 102:4909-4918.
– reference: Ågren H, Carravetta V, Vahtras O, Pettersson LGM. Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem Phys Lett 1994, 222:75-81.
– reference: Rizzo A, Ågren H. Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys 2013, 15:1198-1207.
– reference: Norman P, Schimmelpfennig B, Ruud K, Jensen HJAa, Ågren H. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory. J Chem Phys 2002, 116:6914-6923.
– reference: Kristensen K, Jørgensen P, Jansík B, Kjærgaard T, Reine S. Molecular gradient for second-order Møller-Plesset perturbation theory using the Divide-Expand-Consolidate (DEC) scheme. J Chem Phys 2012, 137:114102.
– reference: Eriksen JJ, Sauer SPA, Mikkelsen KV, Jensen HJAa, Kongsted J. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. J Comput Chem 2012, 33:2012-2022.
– reference: Packer MJ, Dalskov EK, Enevoldsen T, Jensen HJAa, Oddershede J. A new implementation of the second-order polarization propagator approximation (SOPPA): the excitation spectra of benzene and naphthalene. J Chem Phys 1996, 105: 5886-5900 .
– reference: Watson MA, Sałek P, Macak P, Helgaker T. Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. J Chem Phys 2004, 121:2915-2931.
– reference: Rinkevicius Z, Tunell I, Salek P, Vahtras O, Ågren H. Restricted density functional theory of linear time-dependent properties in open-shell molecules. J Chem Phys 2003, 119:34-46.
– reference: Sneskov K, Schwabe T, Kongsted J, Christiansen O. The polarizable embedding coupled cluster method. J Chem Phys 2012, 134:104108-104123.
– reference: Cacheiro JL, Pedersen TB, Fernández B, Sánchez de Merás A, Koch H. The CCSD(T) model with Cholesky decomposition of orbital energy denominators. Int J Quantum Chem 2011, 111:349-355.
– reference: Jonsson D, Norman P, Ågren H. Cubic response functions in the multiconfiguration self-consistent field approximation. J Chem Phys 1996, 105:6401-6419.
– reference: Hättig C, Christiansen O, Coriani S, Jørgensen P. Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory. J Chem Phys 1994, 109:9237-9243.
– reference: Rinkevicius Z, Vahtras O, Ågren H. Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 2010, 133:114104.
– reference: Hald K, Jørgensen P, Christiansen O, Koch H. Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections. J Chem Phys 2002, 116:5963-5970.
– reference: 16482297 - Phys Chem Chem Phys. 2006 Feb 7;8(5):558-62
– reference: 17628096 - J Phys Chem B. 2007 Aug 2;111(30):8965-73
– reference: 15485221 - J Chem Phys. 2004 Oct 22;121(16):7614-23
– reference: 23223557 - Phys Chem Chem Phys. 2013 Jan 28;15(4):1198-207
– reference: 16238384 - J Chem Phys. 2005 Oct 8;123(14):144117
– reference: 21405157 - J Chem Phys. 2011 Mar 14;134(10):104108
– reference: 15473713 - J Chem Phys. 2004 Oct 8;121(14):6591-8
– reference: 15267824 - J Chem Phys. 2004 May 15;120(19):8887-97
– reference: 17430011 - J Chem Phys. 2007 Apr 7;126(13):134102
– reference: 17155244 - Phys Rev Lett. 2006 Oct 6;97(14):143001
– reference: 19475173 - Phys Chem Chem Phys. 2009 Jun 14;11(22):4539-48
– reference: 18190186 - J Chem Phys. 2008 Jan 7;128(1):014108
– reference: 23090588 - Phys Chem Chem Phys. 2012 Dec 5;14(45):15706-14
– reference: 23108605 - J Comput Chem. 2013 Mar 15;34(7):533-44
– reference: 15267321 - J Chem Phys. 2004 Mar 8;120(10):4619-25
– reference: 15378642 - Chemistry. 2004 Sep 20;10(18):4627-39
– reference: 20687628 - J Chem Phys. 2010 Jul 28;133(4):044102
– reference: 17381190 - J Chem Phys. 2007 Mar 21;126(11):114101
– reference: 26605725 - J Chem Theory Comput. 2012 Sep 11;8(9):3137-46
– reference: 21766930 - J Chem Phys. 2011 Jul 14;135(2):024112
– reference: 16321072 - J Chem Phys. 2005 Nov 15;123(19):194103
– reference: 15291602 - J Chem Phys. 2004 Aug 15;121(7):2915-31
– reference: 19842498 - Phys Chem Chem Phys. 2009 Jul 21;11(27):5805-13
– reference: 18681637 - J Chem Phys. 2008 Jul 28;129(4):044110
– reference: 19044902 - J Chem Phys. 2008 Sep 14;129(10):104101
– reference: 17461618 - J Chem Phys. 2007 Apr 21;126(15):154111
– reference: 26613143 - J Chem Theory Comput. 2009 Aug 11;5(8):1997-2020
– reference: 17431520 - Phys Chem Chem Phys. 2007 Apr 28;9(16):1921-30
– reference: 22685085 - J Comput Chem. 2012 Sep 30;33(25):2012-22
– reference: 18331083 - J Chem Phys. 2008 Mar 7;128(9):094103
– reference: 26596429 - J Chem Theory Comput. 2011 Jun 14;7(6):1610-30
– reference: 19063545 - J Chem Phys. 2008 Dec 7;129(21):214108
– reference: 24006965 - J Chem Phys. 2013 Aug 28;139(8):081101
– reference: 22236047 - Chem Rev. 2012 Jan 11;112(1):543-631
– reference: 17461615 - J Chem Phys. 2007 Apr 21;126(15):154108
– reference: 15538844 - J Chem Phys. 2004 Nov 15;121(19):9239-46
– reference: 15740310 - J Chem Phys. 2005 Feb 1;122(5):54107
– reference: 20515086 - J Chem Phys. 2010 May 28;132(20):204105
– reference: 18247941 - J Chem Phys. 2008 Jan 28;128(4):044118
– reference: 20568855 - J Chem Phys. 2009 Oct 21;131(15):154115
– reference: 20614959 - J Chem Phys. 2010 Jul 7;133(1):014107
– reference: 17381199 - J Chem Phys. 2007 Mar 21;126(11):114110
– reference: 20866123 - J Chem Phys. 2010 Sep 21;133(11):114104
– reference: 22998244 - J Chem Phys. 2012 Sep 21;137(11):114102
– reference: 19787935 - Phys Chem Chem Phys. 2005 Apr 21;7(8):1747-58
– reference: 21599041 - J Chem Phys. 2011 May 21;134(19):194104
– reference: 26593655 - J Chem Theory Comput. 2012 May 8;8(5):1616-28
– reference: 19045005 - J Chem Phys. 2008 Sep 28;129(12):124106
– reference: 16689563 - J Chem Phys. 2006 May 7;124(17):174103
– reference: 19655842 - J Chem Phys. 2009 Jul 28;131(4):044112
– reference: 16365846 - J Comput Chem. 2006 Feb;27(3):326-33
SSID ssj0000491231
Score 2.5948427
Snippet Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational...
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational...
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational...
SourceID swepub
pubmedcentral
hal
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 269
SubjectTerms Ab-Initio Calculations
Chemical Sciences
Coupled-Cluster Singles
Density-Functional Theory
Dynamics
Electronic structure
Environmental effects
Frequency-Dependent Polarizabilities
London Atomic Orbitals
Magnetic resonance
Mathematical models
Mechanics (physics)
Molecular dynamics
Molecular modelling
Molecular structure
Natural Circular-Dichroism
Optical activity
or physical chemistry
Plesset Perturbation-Theory
Polarizable Continuum Model
Properties
Quantum chemistry
Response Theory Calculations
Scaling
Self-Consistent-Field
Software Focus
TECHNOLOGY
TEKNIKVETENSKAP
Theoretical and
UNIX
Title The Dalton quantum chemistry program system
URI https://api.istex.fr/ark:/67375/WNG-0G8NBRD9-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1172
https://www.ncbi.nlm.nih.gov/pubmed/25309629
https://www.proquest.com/docview/1707342779
https://www.proquest.com/docview/2007945229
https://www.proquest.com/docview/1826614147
https://hal.science/hal-01082875
https://pubmed.ncbi.nlm.nih.gov/PMC4171759
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145261
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106677
Volume 4
WOSCitedRecordID wos000334522200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0884
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFQle-P4ojCkghHiJFjt2bYun0tLtYVTTYKxvlu04tBpLoW0Gfz53SRoUMQkkXqIod47iy9n-nXP5HSGvqFeOKcrjJNci5g4wnNWZjH0GcELB-sSDrYpNyOlUzWb6ZIe83f4LU_NDtBtuODKq-RoHuHXrg9-koT_85Ro_OcL826M0VVi3gfGTdoMFoC_MylXAJYWOkXptyyyUsIO2Nawpc0yB7KFVf16HM_9Ml2xIRbt4tlqQJnf-qyt3ye0Gh0bD2nHukZ1Q3Cc3R9vybw8I5mJEY4tFp6PvJdi_vIz8Vhw1aV1RTQT9kJxN3n8aHcVNZYV4PgCAFYcgmB3Y3NtUwhKlXR4GjucZxMk6o2nuBQ-5cjS3AQBZxmw6SLz2IObOU-_TR2S3WBbhCYkcxBzMSy9VAGHqNGCqVGovhMwcY7RPXoJ9zbeaO8Mgm_XR8NjgNQgFkW5fXIHS68r8rZpdXWDGmRTmfHpokkM1fXc61ibpk73t-zHNYFsbKmGe4kxKfa0Yd2M1EseD-EUrBnPhpxFbhGUJt1AVUKFc9snj-m23z8JECnEetpYdP-j0qSspFvOKqZtTic4H3as9ptNkvPg8NMvVF3OxmUMEJiCW_Yvi10VpKGYlw1O-qRyq1avZp5lBV0ICd2bORx8-4snTf1d9Rm4BHuR1Puce2d2syvCc3PBXm8V6tV8NLzjKmdonvfHp5Oz4F24WKhE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFWm88P3RMSAghHiJFjt2HUu8lJauiC5CY2N7sxzHodW2FNpm8Odzly8UMQkk3qLcOfLH2f7d-fIzIa-ojRIWUe4HmRI-TwDDGZVK36YAJyLYn7gz5WUTMo6jszP1aYu8bf6Fqfgh2oAbzoxyvcYJjgHp_d-soT_s5RrPHGEB7nEwI7Dv3vhocjJrYyyAfmFhLn0uKZSP7GsNuVDA9tvysK3MMQuyhx378zqo-WfGZM0r2oW05Z40uf1_rblDbtVY1BtWxnOXbLn8HtkZNVfA3SeYj-GNDV487X0vYAyKS882Yq9O7fIqMugH5GTy_ng09evbFfz5AECW75xgZmAya0IJ25RKMjdIeJaCr6xSGmZWcJdFCc2MA1CWMhMOAqssiHliqbXhQ7KdL3P3mHgJ-B3MSisjB8IwUYCrQqmsEDJNGKN98hI6WH-r-DM0MlpPhzON78AdRMp9cQVKr8v-b9XM6hyzzqTQp_GBDg6i-N3RWOmgT_aaAdL1hFtrKmGt4kxKda0YI7IKyeNB_KIVQ3fh8YjJ3bKAT0QlWKFc9smjarjbujARgq-HpWXHEDpt6kryxbxk6-ZUovVB8yqT6RQZL74M9XL1VZ9v5uCFCfBn_6J4sSg0xcxkqOWb0qJavYqBmmk0JSRxZ_p0dPgZH3b_XfU52ZkeH8707EP88Qm5CfiQV_mde2R7syrcU3LDXm0W69Wzerb9AjSlLQ8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFgEvfMMKAwJCiJdosWPXscRLaeiGKNU0GNub5TgOrbalo20Gfz53-UIRk0DiLcqdI3-c7d_Zl98R8oraKGER5X6QKeHzBDCcUan0bQpwIoL9iTtTJpuQs1l0cqIOtsjb5l-Yih-iPXDDmVGu1zjB3UWa7f5mDf1hz9d45wgLcJ9jEpke6ceHk6Npe8YC6BcW5tLnkkL5yL7WkAsFbLctD9vKHKMg-9ixP6-Cmn9GTNa8ol1IW-5Jk9v_15o75FaNRb1RZTx3yZbL75Eb4yYF3H2C8RhebDDxtPe9gDEozj3biL06tMuryKAfkKPJ-y_jfb_OruDPhwCyfOcEM0OTWRNK2KZUkrlhwrMUfGWV0jCzgrssSmhmHICylJlwGFhlQcwTS60NH5JevszdNvES8DuYlVZGDoRhogBXhVJZIWSaMEYH5CV0sL6o-DM0Mlrvj6Ya34E7iJT74hKUXpf936qZ1SlGnUmhj2d7OtiLZu8OY6WDAdlpBkjXE26tqYS1ijMp1ZViPJFVSB4P4hetGLoLr0dM7pYFfCIqwQrlckAeVcPd1oWJEHw9LC07htBpU1eSL-YlWzenEq0PmleZTKdIvPg60svVN326mYMXJsCf_Yvi2aLQFCOToZZvSotq9SoGaqbRlJDEnenj8afP-PD431Wfk-sH8URPP8w-PiE3AR7yKrxzh_Q2q8I9Jdfs5WaxXj2rJ9svf-Isig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dalton+quantum+chemistry+program+system&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Aidas%2C+Kestutis&rft.au=Angeli%2C+Celestino&rft.au=Bak%2C+Keld+L.&rft.au=Bakken%2C+Vebj%C3%B8rn&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=4&rft.issue=3&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1002%2Fwcms.1172&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0G8NBRD9_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon