The Dalton quantum chemistry program system
Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety...
Saved in:
| Published in: | Wiley interdisciplinary reviews. Computational molecular science Vol. 4; no. 3; pp. 269 - 284 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Blackwell Publishing Ltd
01.05.2014
Wiley Subscription Services, Inc Wiley |
| Subjects: | |
| ISSN: | 1759-0876, 1759-0884, 1759-0884 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
This article is categorized under:
Software > Quantum Chemistry |
|---|---|
| AbstractList | Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms. Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. This article is categorized under: Software > Quantum Chemistry Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.This article is categorized under:Software > Quantum Chemistry Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from www.daltonprogram.org for a number of UNIX platforms. |
| Author | Watson, Mark A. Ziolkowski, Marcin Steindal, Arnfinn H. Ettenhuber, Patrick Melo, Juan I. Bak, Keld L. Heiberg, Hanne Hjertenæs, Eirik Kauczor, Joanna Neiss, Christian Jensen, Hans Jørgen Aa Enevoldsen, Thomas Boman, Linus Kobayashi, Rika Høst, Stinne Sneskov, Kristian Nielsen, Christian B. Aidas, Kestutis Ferrighi, Lara Jansík, Branislav de Merás, Alfredo Sánchez Pawlowski, Filip Ligabue, Andrea Provasi, Patricio F. Sauer, Stephan P. A. Ågren, Hans Bast, Radovan Reine, Simen Kongsted, Jacob Christiansen, Ove Lutnæs, Ola B. Norman, Patrick Samson, Claire C. M. Thøgersen, Lea Cimiraglia, Renzo Frediani, Luca Høyvik, Ida-Marie Bakken, Vebjørn Dahle, Pål Sałek, Pawel Kirpekar, Sheela Klopper, Wim Olsen, Jógvan Magnus H. Hettema, Hinne Thorvaldsen, Andreas J. Taylor, Peter R. Mikkelsen, Kurt V. Tew, David P. Kjærgaard, Thomas Saue, Trond Wilson, David J. D. Angeli, Celestino Ekström, Ulf Eriksen, Janus J. Rinkevicius, Zilvinas Teale, Andrew M. Jørgensen, Poul Iozzi, Maria Francesca Ruden, Torgeir A. Sylvester-Hvid, Kristian O. Hald, Kasper Fernández |
| Author_xml | – sequence: 1 givenname: Kestutis surname: Aidas fullname: Aidas, Kestutis organization: Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Vilnius, Lithuania – sequence: 2 givenname: Celestino surname: Angeli fullname: Angeli, Celestino organization: Department of Chemistry, University of Ferrara, Ferrara, Italy – sequence: 3 givenname: Keld L. surname: Bak fullname: Bak, Keld L. organization: Aarhus University School of Engineering, Aarhus, Denmark – sequence: 4 givenname: Vebjørn surname: Bakken fullname: Bakken, Vebjørn organization: Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway – sequence: 5 givenname: Radovan surname: Bast fullname: Bast, Radovan organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 6 givenname: Linus surname: Boman fullname: Boman, Linus organization: EMGS ASA, Trondheim, Norway – sequence: 7 givenname: Ove surname: Christiansen fullname: Christiansen, Ove organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 8 givenname: Renzo surname: Cimiraglia fullname: Cimiraglia, Renzo organization: Department of Chemistry, University of Ferrara, Ferrara, Italy – sequence: 9 givenname: Sonia surname: Coriani fullname: Coriani, Sonia organization: Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy – sequence: 10 givenname: Pål surname: Dahle fullname: Dahle, Pål organization: Norwegian Computing Center, Oslo, Norway – sequence: 11 givenname: Erik K. surname: Dalskov fullname: Dalskov, Erik K. organization: Systematic, Aarhus, Denmark – sequence: 12 givenname: Ulf surname: Ekström fullname: Ekström, Ulf organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 13 givenname: Thomas surname: Enevoldsen fullname: Enevoldsen, Thomas organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark – sequence: 14 givenname: Janus J. surname: Eriksen fullname: Eriksen, Janus J. organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 15 givenname: Patrick surname: Ettenhuber fullname: Ettenhuber, Patrick organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 16 givenname: Berta surname: Fernández fullname: Fernández, Berta organization: Department of Physical Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain – sequence: 17 givenname: Lara surname: Ferrighi fullname: Ferrighi, Lara organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 18 givenname: Heike surname: Fliegl fullname: Fliegl, Heike organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 19 givenname: Luca surname: Frediani fullname: Frediani, Luca organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 20 givenname: Kasper surname: Hald fullname: Hald, Kasper organization: Danske Bank, Horsens, Denmark – sequence: 21 givenname: Asger surname: Halkier fullname: Halkier, Asger organization: CSC Scandihealth, Aarhus, Denmark – sequence: 22 givenname: Christof surname: Hättig fullname: Hättig, Christof organization: Department of Theoretical Chemistry, Ruhr-University Bochum, Bochum, Germany – sequence: 23 givenname: Hanne surname: Heiberg fullname: Heiberg, Hanne organization: Norwegian Meteorological Institute, Oslo, Norway – sequence: 24 givenname: Trygve surname: Helgaker fullname: Helgaker, Trygve email: trygve.helgaker@kjemi.uio.no organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 25 givenname: Alf Christian surname: Hennum fullname: Hennum, Alf Christian organization: Norwegian Defence Research Establishment, Kjeller, Norway – sequence: 26 givenname: Hinne surname: Hettema fullname: Hettema, Hinne organization: Department of Philosophy, The University of Auckland, Auckland, New Zealand – sequence: 27 givenname: Eirik surname: Hjertenæs fullname: Hjertenæs, Eirik organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 28 givenname: Stinne surname: Høst fullname: Høst, Stinne organization: Department of Geoscience, Aarhus University, Aarhus, Denmark – sequence: 29 givenname: Ida-Marie surname: Høyvik fullname: Høyvik, Ida-Marie organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 30 givenname: Maria Francesca surname: Iozzi fullname: Iozzi, Maria Francesca organization: University Centre of Information Technology, University of Oslo, Oslo, Norway – sequence: 31 givenname: Branislav surname: Jansík fullname: Jansík, Branislav organization: VSB - Technical University of Ostrava, Ostrava, Czech Republic – sequence: 32 givenname: Hans Jørgen Aa surname: Jensen fullname: Jensen, Hans Jørgen Aa organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark – sequence: 33 givenname: Dan surname: Jonsson fullname: Jonsson, Dan organization: High-Performance Computing Group, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 34 givenname: Poul surname: Jørgensen fullname: Jørgensen, Poul organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 35 givenname: Joanna surname: Kauczor fullname: Kauczor, Joanna organization: Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden – sequence: 36 givenname: Sheela surname: Kirpekar fullname: Kirpekar, Sheela organization: KVUC, Copenhagen, Denmark – sequence: 37 givenname: Thomas surname: Kjærgaard fullname: Kjærgaard, Thomas organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 38 givenname: Wim surname: Klopper fullname: Klopper, Wim organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany – sequence: 39 givenname: Stefan surname: Knecht fullname: Knecht, Stefan organization: Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland – sequence: 40 givenname: Rika surname: Kobayashi fullname: Kobayashi, Rika organization: Australian National University Supercomputer Facility, Canberra, Australia – sequence: 41 givenname: Henrik surname: Koch fullname: Koch, Henrik organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 42 givenname: Jacob surname: Kongsted fullname: Kongsted, Jacob organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark – sequence: 43 givenname: Andreas surname: Krapp fullname: Krapp, Andreas organization: Jotun A/S, Sandefjord, Norway – sequence: 44 givenname: Kasper surname: Kristensen fullname: Kristensen, Kasper organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 45 givenname: Andrea surname: Ligabue fullname: Ligabue, Andrea organization: Computer Services: Networks and Systems, University of Modena and Reggio Emilia, Modena, Italy – sequence: 46 givenname: Ola B. surname: Lutnæs fullname: Lutnæs, Ola B. organization: Cisco Systems, Lysaker, Norway – sequence: 47 givenname: Juan I. surname: Melo fullname: Melo, Juan I. organization: Physics Department, FCEyN-UBA and IFIBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 48 givenname: Kurt V. surname: Mikkelsen fullname: Mikkelsen, Kurt V. organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark – sequence: 49 givenname: Rolf H. surname: Myhre fullname: Myhre, Rolf H. organization: Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 50 givenname: Christian surname: Neiss fullname: Neiss, Christian organization: Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany – sequence: 51 givenname: Christian B. surname: Nielsen fullname: Nielsen, Christian B. organization: Sun Chemical, Køge, Denmark – sequence: 52 givenname: Patrick surname: Norman fullname: Norman, Patrick organization: Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden – sequence: 53 givenname: Jeppe surname: Olsen fullname: Olsen, Jeppe organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 54 givenname: Jógvan Magnus H. surname: Olsen fullname: Olsen, Jógvan Magnus H. organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark – sequence: 55 givenname: Anders surname: Osted fullname: Osted, Anders organization: Køge Gymnasium, Køge, Denmark – sequence: 56 givenname: Martin J. surname: Packer fullname: Packer, Martin J. organization: Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark – sequence: 57 givenname: Filip surname: Pawlowski fullname: Pawlowski, Filip organization: Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland – sequence: 58 givenname: Thomas B. surname: Pedersen fullname: Pedersen, Thomas B. organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 59 givenname: Patricio F. surname: Provasi fullname: Provasi, Patricio F. organization: Department of Physics, University of Northeastern and IMIT-CONICET, Corrientes, Argentina – sequence: 60 givenname: Simen surname: Reine fullname: Reine, Simen organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 61 givenname: Zilvinas surname: Rinkevicius fullname: Rinkevicius, Zilvinas organization: Department of Theoretical Chemistry and Biology, School of Biotechnology and Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 62 givenname: Torgeir A. surname: Ruden fullname: Ruden, Torgeir A. organization: Kjeller Software Community, Oslo, Norway – sequence: 63 givenname: Kenneth surname: Ruud fullname: Ruud, Kenneth organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 64 givenname: Vladimir V. surname: Rybkin fullname: Rybkin, Vladimir V. organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany – sequence: 65 givenname: Pawel surname: Sałek fullname: Sałek, Pawel organization: PSS9 Development, Cracow, Poland – sequence: 66 givenname: Claire C. M. surname: Samson fullname: Samson, Claire C. M. organization: Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany – sequence: 67 givenname: Alfredo Sánchez surname: de Merás fullname: de Merás, Alfredo Sánchez organization: Institute of Molecular Science, University of Valencia, Valencia, Spain – sequence: 68 givenname: Trond surname: Saue fullname: Saue, Trond organization: Paul Sabatier University, Toulouse, France – sequence: 69 givenname: Stephan P. A. surname: Sauer fullname: Sauer, Stephan P. A. organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark – sequence: 70 givenname: Bernd surname: Schimmelpfennig fullname: Schimmelpfennig, Bernd organization: Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Karlsruhe, Germany – sequence: 71 givenname: Kristian surname: Sneskov fullname: Sneskov, Kristian organization: Danske Bank, Aarhus, Denmark – sequence: 72 givenname: Arnfinn H. surname: Steindal fullname: Steindal, Arnfinn H. organization: CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 73 givenname: Kristian O. surname: Sylvester-Hvid fullname: Sylvester-Hvid, Kristian O. organization: Danish Technological Institute Nano- and Microtechnology Production, Taastrup, Denmark – sequence: 74 givenname: Peter R. surname: Taylor fullname: Taylor, Peter R. organization: VLSCI and School of Chemistry, University of Melbourne, Parkville, Australia – sequence: 75 givenname: Andrew M. surname: Teale fullname: Teale, Andrew M. organization: School of Chemistry, University of Nottingham, Nottingham, UK – sequence: 76 givenname: Erik I. surname: Tellgren fullname: Tellgren, Erik I. organization: CTCC, Department of Chemistry, University of Oslo, Oslo, Norway – sequence: 77 givenname: David P. surname: Tew fullname: Tew, David P. organization: School of Chemistry, University of Bristol, Bristol, UK – sequence: 78 givenname: Andreas J. surname: Thorvaldsen fullname: Thorvaldsen, Andreas J. organization: Department of Chemistry, Aarhus University, Aarhus, Denmark – sequence: 79 givenname: Lea surname: Thøgersen fullname: Thøgersen, Lea organization: CLC bio, Aarhus, Denmark – sequence: 80 givenname: Olav surname: Vahtras fullname: Vahtras, Olav organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 81 givenname: Mark A. surname: Watson fullname: Watson, Mark A. organization: Department of Chemistry, Princeton University, New Jersey, Princeton – sequence: 82 givenname: David J. D. surname: Wilson fullname: Wilson, David J. D. organization: Department of Chemistry and La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia – sequence: 83 givenname: Marcin surname: Ziolkowski fullname: Ziolkowski, Marcin organization: CoE for Next Generation Computing, Clemson University, South Carolina, Clemson – sequence: 84 givenname: Hans surname: Ågren fullname: Ågren, Hans organization: Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25309629$$D View this record in MEDLINE/PubMed https://hal.science/hal-01082875$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145261$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106677$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNqNkk1vEzEQhi1UREvpgT-AInEBVdt6vF57fakUkpIihSJBoceR1_Fmt92P1N5tyL_Hq5RAe0D44pHnma_X85LsNW1jCXkN9AQoZadrU_sTAMmekQOQiYpomvK9nS3FPjny_oaGwxWwGF6QfZbEVAmmDsjxVWFHU111bTO663XT9fXIFLYufec2o5Vrl07XI7_xna1fkee5rrw9ergPyfeP51eTi2j-ZfZpMp5HhQBgkbUJ00LnRscypaCy3IqM5wvJmVpAnJuE2zzNINc2AVgwHQtqlAlunhkwJj4k0TavX9tVn-HKlbV2G2x1idPyxxhbt8Sq7BGoEFL-H3_bFQg8YQICf7blA1zbhbFN53T1KOyxpykLXLb3yEEOqoYE77cJiidhF-M5Dm8UaMpSmdwPxd49FHPtXW99h0FbY6tKN7btPULKhAAOfJjj7RP0pu1dE6RGRqlUoXum_kWBpDLmTMqBevP3jLsuf_98AE63wLqs7GbnB4rDVuGwVThsFV5PPn8bjD8yh92wP3cR2t2ikLFM8PpyhnSWXn74OlVI41-E2s5C |
| ContentType | Journal Article |
| Copyright | 2013 John Wiley & Sons, Ltd. 2014 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License 2013 John Wiley & Sons, Ltd. 2013 |
| Copyright_xml | – notice: 2013 John Wiley & Sons, Ltd. – notice: 2014 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2013 John Wiley & Sons, Ltd. 2013 |
| DBID | BSCLL 24P NPM 7QH 7TN 7UA C1K F1W H96 JQ2 L.G 7X8 1XC 5PM ADTPV AOWAS D8V DG8 |
| DOI | 10.1002/wcms.1172 |
| DatabaseName | Istex Wiley Online Library : Open Access journals [open access] PubMed Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Linköpings universitet |
| DatabaseTitle | PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | 284 |
| ExternalDocumentID | oai_DiVA_org_liu_106677 oai_DiVA_org_kth_145261 PMC4171759 oai:HAL:hal-01082875v1 3788619191 25309629 WCMS1172 ark_67375_WNG_0G8NBRD9_0 |
| Genre | article Journal Article |
| GroupedDBID | 05W 0R~ 1OC 1VH 31~ 33P 8-0 8-1 AAESR AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR ZZTAW ~S- 24P A00 AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALUQN WYJ NPM 7QH 7TN 7UA C1K F1W H96 JQ2 L.G 7X8 1XC 5PM ADTPV AOWAS D8V DG8 |
| ID | FETCH-LOGICAL-h6112-ee52a6afca378019bfe6b4fd7429d13fc54ef8b1fae511d2a360c9c7424bc1cc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1433 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334522200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 1759-0884 |
| IngestDate | Tue Nov 04 16:52:16 EST 2025 Tue Nov 04 17:20:10 EST 2025 Tue Nov 04 01:52:36 EST 2025 Sat Oct 25 06:47:27 EDT 2025 Fri Sep 05 06:07:02 EDT 2025 Fri Jul 25 10:42:37 EDT 2025 Fri Jul 25 10:40:01 EDT 2025 Mon Jul 21 05:51:15 EDT 2025 Wed Jan 22 16:32:03 EST 2025 Tue Nov 11 03:32:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h6112-ee52a6afca378019bfe6b4fd7429d13fc54ef8b1fae511d2a360c9c7424bc1cc3 |
| Notes | ark:/67375/WNG-0G8NBRD9-0 ArticleID:WCMS1172 istex:EF8B98DB37DF65E8E21DA2DC57826D136FE389A7 The authors have declared no conflicts of interest in relation to this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC4171759 |
| ORCID | 0000-0001-6407-0305 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1172 |
| PMID | 25309629 |
| PQID | 1707342779 |
| PQPubID | 2034594 |
| PageCount | 16 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_106677 swepub_primary_oai_DiVA_org_kth_145261 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4171759 hal_primary_oai_HAL_hal_01082875v1 proquest_miscellaneous_1826614147 proquest_journals_2007945229 proquest_journals_1707342779 pubmed_primary_25309629 wiley_primary_10_1002_wcms_1172_WCMS1172 istex_primary_ark_67375_WNG_0G8NBRD9_0 |
| PublicationCentury | 2000 |
| PublicationDate | May/June 2014 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: May/June 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken – name: Oxford, UK |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationTitleAlternate | WIREs Comput Mol Sci |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
| References | Kongsted J, Osted A, Mikkelsen KV, Christiansen O. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J Chem Phys 2003, 118:1620-1633. Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P. Molecular Hessians for large-scale MCSCF wave functions. J Chem Phys 1986, 84:6266-6279. Mikkelsen KV, Cesar A, Ågren H, Jensen HJAa. Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation. J Chem Phys 1995, 103: 9010-9023. Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys 2002, 117:13-26. Vahtras O, Rinkevicius Z. General excitations in time-dependent density functional theory. J Chem Phys 2007, 126:114101. Mikkelsen KV, Jørgensen P, Jensen HJAa. A multiconfiguration self consistent reaction field response method. J Chem Phys 1994, 100:6597-6607. Olsen JMH, Kongsted J. Molecular properties through polarizable embedding. Adv Quantum Chem 2011, 61:107-143. Christiansen O, Mikkelsen KV. Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. J Chem Phys 1999, 110:8348-8360. Reine S, Krapp A, Iozzi MF, Bakken V, Helgaker T, Pawłowski F, Sałek P. An efficient density-functional-theory force evaluation for large molecular systems. J Chem Phys 2010, 133:044102. Hättig C, Christiansen O, Coriani S, Jørgensen P. Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory. J Chem Phys 1994, 109:9237-9243. Kristensen K, Kauczor J, Kjærgaard T, Jørgensen P. Quasi-energy formulation of damped response theory. J Chem Phys 2009, 131:044112. Kauczor J, Jørgensen P, Norman P. On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations. J Chem Theory Comput 2011, 7:1610-1630. Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss 1994, 99:165-180. Hald K, Jørgensen P, Christiansen O, Koch H. Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections. J Chem Phys 2002, 116:5963-5970. Watson MA, Sałek P, Macak P, Helgaker T. Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. J Chem Phys 2004, 121:2915-2931. Rinkevicius Z, Vahtras O, Ågren H. Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 2010, 133:114104. Koch H, Christiansen O, Kobayashi R, Jørgensen P, Helgaker T. A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem Phys Lett 1994, 228:233-238. Ruud K, Helgaker T, Kobayashi R, Jørgensen P, Bak KL, Jensen HJAa. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals. J Chem Phys 1994, 100:8178-8185. Watson MA, Sałek P, Macak P, Jaszuński M, Helgaker T. The calculation of indirect nuclear spin-spin coupling constants in large molecules. Chem Eur J 2004, 10:4627-4639. Jonsson D, Norman P, Ågren H. Cubic response functions in the multiconfiguration self-consistent field approximation. J Chem Phys 1996, 105:6401-6419. Jonsson D, Norman P, Luo Y, Ågren H. Response theory for static and dynamic polarizabilities of excited states. J Chem Phys 1996, 105:581-587. Ruud K, Schimmelpfennig B, Ågren H. Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett 1999, 310:215-221. Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. Making the random phase approximation to electronic correlation accurate. J Chem Phys 2009, 131:154115. Hättig C, Christiansen O, Koch H, Jørgensen P. Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory. Chem Phys Lett 1997, 269:428-434. Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H. Nonlinear optical response of molecules in a nonequilibrium solvation model. J Chem Phys 1998, 109:5576-5584. Tunell I, Rinkevicius Z, Vahtras O, Sałek P, Helgaker T, Ågren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence. J Chem Phys 2003, 119:11024-11034. Eriksen JJ, Sauer SPA, Mikkelsen KV, Jensen HJAa, Kongsted J. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. J Comput Chem 2012, 33:2012-2022. Kristensen K, Høyvik I-M, Jansík B, Jørgensen P, Kjærgaard T, Reine S, Jakowski J. MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys Chem Chem Phys 2012, 14:15706-15714. Coriani S, Kjærgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp 2010, 6, 1020-1047. Ruud K, Åstrand, P-O, Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys 2000, 112:2668-2683. Luo Y, Vahtras O, Ågren H, Jørgensen P. Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O. Chem Phys Lett 1993, 204:587-594. Pedersen TB, Sánchez de Merás AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys 2004, 120:8887-8897. Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC. Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 2006, 8:558-562. Cacheiro JL, Pedersen TB, Fernández B, Sánchez de Merás A, Koch H. The CCSD(T) model with Cholesky decomposition of orbital energy denominators. Int J Quantum Chem 2011, 111:349-355. Ruud K, Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002, 352:533-539. Coriani S, Helgaker T, Jørgensen P, Klopper W. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. J Chem Phys 2004, 121:6591-6598. Osted A, Kongsted J, Mikkelsen KV, Christiansen O. A CC2 dielectric continuum model and a CC2 molecular mechanics model. Mol Phys 2003, 101:2055-2071. Teale AM, De Proft F, Tozer DJ. Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 2008, 129:044110. Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P: Variational and robust density fitting of four-center two-electron integrals in local metrics. J Chem Phys 2008, 129:104101. Solheim H, Ruud K, Coriani S, Norman P. Complex polarization propagator calculations of magnetic circular dichroism spectra. J Chem Phys 2008, 128:094103. Vahtras O, Minaev B, Ågren H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett 1998, 281:186-192. Mikkelsen KV, Jørgensen P, Ruud K, Helgaker T. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. J Chem Phys 1997, 106:1170-1180. Ziólkowski M, Jansík B, Kjærgaard T, Jørgensen P. Linear scaling coupled-cluster method with correlation energy based error control. J Chem Phys 2010, 133:014107. Rybkin VV, Simakov AO, Bakken V, Reine SS, Kjærgaard T, Helgaker T, Uggerud E. Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics. J Comput Chem 2013, 34:533-544. Hättig C, Christiansen O, Jørgensen P. Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. J Chem Phys 1998, 108:8355-8359. Helgaker T, Taylor PR, HERMIT, A Molecular Integral Code. University of Oslo, Oslo, Norway; 1986. Helgaker T, Watson M, Handy NC. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 2000, 113:9402-9409. Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H. Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes. Chem Phys Lett 1996 253:1-7. Rizzo A, Ågren H. Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys 2013, 15:1198-1207. Coriani S, Fransson T, Christiansen O, Norman P. Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory. J Chem Theory Comput 2012, 8:1616-1628. Helgaker T. Transition-state optimizations by trust-region image minimization. Chem Phys Lett 1991, 182:503-510. Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys 2000, 112:4173-4185. Hennum AC, Helgaker T, Klopper W. Parity-violating interaction in H2O2 calculated from density-functional theory. Chem Phys Lett 2002, 354:274-282. Gauss J, Ruud K, Helgaker T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys 1996, 105:2804-2812. Høyvik I-M, Jansík B, Jørgensen P. Trust region minimization of orbital localization functions. J Chem Theory Comput 2012, 8:3137-3146. Sánchez de Merás AMJ, Koch H, Cuesta IG, Boman L. Cholesky decomposition-based definition of atomic subsystems in electronic struct 16321072 - J Chem Phys. 2005 Nov 15;123(19):194103 19063545 - J Chem Phys. 2008 Dec 7;129(21):214108 18331083 - J Chem Phys. 2008 Mar 7;128(9):094103 15473713 - J Chem Phys. 2004 Oct 8;121(14):6591-8 18190186 - J Chem Phys. 2008 Jan 7;128(1):014108 19045005 - J Chem Phys. 2008 Sep 28;129(12):124106 21405157 - J Chem Phys. 2011 Mar 14;134(10):104108 24006965 - J Chem Phys. 2013 Aug 28;139(8):081101 21766930 - J Chem Phys. 2011 Jul 14;135(2):024112 21599041 - J Chem Phys. 2011 May 21;134(19):194104 18681637 - J Chem Phys. 2008 Jul 28;129(4):044110 22236047 - Chem Rev. 2012 Jan 11;112(1):543-631 15485221 - J Chem Phys. 2004 Oct 22;121(16):7614-23 23108605 - J Comput Chem. 2013 Mar 15;34(7):533-44 17461618 - J Chem Phys. 2007 Apr 21;126(15):154111 15291602 - J Chem Phys. 2004 Aug 15;121(7):2915-31 20568855 - J Chem Phys. 2009 Oct 21;131(15):154115 17381190 - J Chem Phys. 2007 Mar 21;126(11):114101 16365846 - J Comput Chem. 2006 Feb;27(3):326-33 26593655 - J Chem Theory Comput. 2012 May 8;8(5):1616-28 19475173 - Phys Chem Chem Phys. 2009 Jun 14;11(22):4539-48 20687628 - J Chem Phys. 2010 Jul 28;133(4):044102 16689563 - J Chem Phys. 2006 May 7;124(17):174103 26613143 - J Chem Theory Comput. 2009 Aug 11;5(8):1997-2020 20614959 - J Chem Phys. 2010 Jul 7;133(1):014107 26596429 - J Chem Theory Comput. 2011 Jun 14;7(6):1610-30 15378642 - Chemistry. 2004 Sep 20;10(18):4627-39 23090588 - Phys Chem Chem Phys. 2012 Dec 5;14(45):15706-14 17430011 - J Chem Phys. 2007 Apr 7;126(13):134102 19044902 - J Chem Phys. 2008 Sep 14;129(10):104101 19787935 - Phys Chem Chem Phys. 2005 Apr 21;7(8):1747-58 17628096 - J Phys Chem B. 2007 Aug 2;111(30):8965-73 20515086 - J Chem Phys. 2010 May 28;132(20):204105 15267321 - J Chem Phys. 2004 Mar 8;120(10):4619-25 15538844 - J Chem Phys. 2004 Nov 15;121(19):9239-46 15267824 - J Chem Phys. 2004 May 15;120(19):8887-97 19655842 - J Chem Phys. 2009 Jul 28;131(4):044112 15740310 - J Chem Phys. 2005 Feb 1;122(5):54107 17155244 - Phys Rev Lett. 2006 Oct 6;97(14):143001 26605725 - J Chem Theory Comput. 2012 Sep 11;8(9):3137-46 16482297 - Phys Chem Chem Phys. 2006 Feb 7;8(5):558-62 22998244 - J Chem Phys. 2012 Sep 21;137(11):114102 17461615 - J Chem Phys. 2007 Apr 21;126(15):154108 20866123 - J Chem Phys. 2010 Sep 21;133(11):114104 22685085 - J Comput Chem. 2012 Sep 30;33(25):2012-22 18247941 - J Chem Phys. 2008 Jan 28;128(4):044118 23223557 - Phys Chem Chem Phys. 2013 Jan 28;15(4):1198-207 17431520 - Phys Chem Chem Phys. 2007 Apr 28;9(16):1921-30 19842498 - Phys Chem Chem Phys. 2009 Jul 21;11(27):5805-13 17381199 - J Chem Phys. 2007 Mar 21;126(11):114110 16238384 - J Chem Phys. 2005 Oct 8;123(14):144117 |
| References_xml | – reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Padkjær SB, Helgaker T. Indirect nuclear spin-spin coupling constants from multiconfiguration linear response theory. J Chem Phys 1992, 96:6120-6125. – reference: Hättig C, Christiansen O, Koch H, Jørgensen P. Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory. Chem Phys Lett 1997, 269:428-434. – reference: Vahtras O, Loboda O, Minaev B, Ågren H, Ruud K. Ab initio calculations of zero-field splitting parameters. Chem Phys 2002, 279:133-142. – reference: Norman P, Bishop DM, Jensen HJAa, Oddershede J. Nonlinear response theory with relaxation: the first-order hyperpolarizability. J Chem Phys 2005, 123:194103. – reference: Osted A, Kongsted J, Mikkelsen KV, Christiansen O. A CC2 dielectric continuum model and a CC2 molecular mechanics model. Mol Phys 2003, 101:2055-2071. – reference: Mikkelsen KV, Jørgensen P, Ruud K, Helgaker T. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. J Chem Phys 1997, 106:1170-1180. – reference: Helgaker T, Taylor PR, HERMIT, A Molecular Integral Code. University of Oslo, Oslo, Norway; 1986. – reference: Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. Making the random phase approximation to electronic correlation accurate. J Chem Phys 2009, 131:154115. – reference: Kristensen K, Høyvik I-M, Jansík B, Jørgensen P, Kjærgaard T, Reine S, Jakowski J. MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys Chem Chem Phys 2012, 14:15706-15714. – reference: Reine S, Krapp A, Iozzi MF, Bakken V, Helgaker T, Pawłowski F, Sałek P. An efficient density-functional-theory force evaluation for large molecular systems. J Chem Phys 2010, 133:044102. – reference: Helgaker TU, Jensen HJAa, Jørgensen P. Analytical calculation of MCSCF dipole-moment derivatives. J Chem Phys 1986, 84:6280-6284. – reference: Sałek P, Vahtras O, Helgaker T, Ågren H. Density-functional theory of linear and nonlinear time-dependent molecular properties. J Chem Phys 2002, 117:9630-9645. – reference: Bakken V, Helgaker T. The efficient optimization of molecular geometries using redundant internal coordinates. J Chem Phys 2002, 117:9160-9174. – reference: Steindal AH, Olsen JMH, Frediani L, Kongsted J, Ruud K. Parallelization of the polarizable embedding scheme for higher-order response functions. Mol Phys 2012, 110:2579-2586. – reference: Olsen J, Roos BO, Jørgensen P, Jensen HJAa. Determinant based algorithms for complete and restricted configuration interaction spaces. J Chem Phys 1988, 89:2185-2192. – reference: Cesar A, Ågren H, Helgaker T, Jørgensen P, Jensen HJAa. Excited state structures and vibronic spectra of H2CO+, HDCO+ and D2CO+ using molecular gradient and Hessian techniques. J Chem Phys 1991, 95:5906-5917. – reference: Rybkin VV, Simakov AO, Bakken V, Reine SS, Kjærgaard T, Helgaker T, Uggerud E. Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics. J Comput Chem 2013, 34:533-544. – reference: Hättig C, Christiansen O, Jørgensen P. Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. J Chem Phys 1998, 108:8355-8359. – reference: Mikkelsen KV, Ågren H, Jensen HJAa, Helgaker T. A multiconfigurational self-consistent reaction-field method. J Chem Phys 1988, 89:3086-3095. – reference: Oprea O, Telyatnyk L, Rinkevicius Z, Vahtras O, Ågren H. Time-dependent density functional theory with the generalized restricted-unrestricted approach. J Chem Phys 2006, 124:174103. – reference: Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys 2002, 117:13-26. – reference: Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC. Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 2006, 8:558-562. – reference: Jonsson D, Norman P, Luo Y, Ågren H. Response theory for static and dynamic polarizabilities of excited states. J Chem Phys 1996, 105:581-587. – reference: Ågren H, Jensen HJAa. An efficient method for calculation of generalized overlap amplitudes for core photoelectron shake-up spectra. Chem Phys Lett 1987, 137:431-436. – reference: Kjærgaard T, Kristensen K, Kauczor J, Jørgensen P, Coriani S, Thorvaldsen AJ. Comparison of standard and damped response formulations of magnetic circular dichroism. J Chem Phys 2011, 135:024112 – reference: Samson CCM, Klopper W, Helgaker, T. Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12 exp(−γ r212). Comp Phys Commun 2002, 149:1-10. – reference: Høst S, Olsen J, Jansík B, Thøgersen L, Jørgensen P, Helgaker T. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. J Chem Phys 2008, 129:124106. – reference: Ochsenfeld C, White CA, Head-Gordon M. Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices. J Chem Phys 1998, 109:1663-1669. – reference: Olsen JMH, Kongsted J. Molecular properties through polarizable embedding. Adv Quantum Chem 2011, 61:107-143. – reference: Kongsted J, Osted A, Mikkelsen KV, Christiansen O. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J Chem Phys 2003, 118:1620-1633. – reference: Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H. Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes. Chem Phys Lett 1996 253:1-7. – reference: Sałek P, Høst S, Thøgersen L, Jørgensen P, Manninen P, Olsen J, Jansík B, Reine S, Pawłowski F, Tellgren E, Helgaker T, Coriani S. Linear-scaling implementation of molecular electronic self-consistent field theory. J Chem Phys 2007, 126:114110. – reference: Vahtras O, Minaev B, Ågren H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett 1998, 281:186-192. – reference: Pedersen TB, Sánchez de Merás AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys 2004, 120:8887-8897. – reference: Fernández B, Jørgensen P, Byberg J, Olsen J, Helgaker T, Jensen HJAa. Spin polarization in restricted electronic structure theory: multiconfiguration self-consistent-field calculations of hyperfine coupling constants. J Chem Phys 1992, 97:3412-3419. – reference: Olsen JM, Aidas K, Kongsted J. Excited states in solution through polarizable embedding. J Chem Theory Comput 2010, 6:3721-3734. – reference: Cammi R, Frediani L, Mennucci B, Ruud K. Multiconfigurational self-consistent field linear response for the polarizable continuum model: theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution. J Chem Phys 2003, 119:5818-5827. – reference: Christiansen O, Hättig C, Jørgensen P. Response functions from Fourier component perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem 1998, 68:1-52. – reference: Fernández B, Christensen O, Bludsky O, Jørgensen P, Mikkelsen KV. Theory of hyperfine coupling constants of solvated molecules: applications involving methyl and ClO2 radicals in different solvents. J Chem Phys 1996, 104:629-635. – reference: Teale AM, De Proft F, Tozer DJ. Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 2008, 129:044110. – reference: Helgaker T, Watson M, Handy NC. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 2000, 113:9402-9409. – reference: Luo Y, Vahtras O, Ågren H, Jørgensen P. Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O. Chem Phys Lett 1993, 204:587-594. – reference: Ahrén M, Selegård L, Söderlind F, Linares M, Kauczor J, Norman P, Käll P-O, Uvdal K. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study. J Nanopart Res 2012, 14:1006. – reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Spin-orbit coupling constants in a multiconfiguration linear response approach. J Chem Phys 1992, 96:2118-2126. – reference: Christiansen O, Mikkelsen KV. A coupled-cluster solvent reaction field method. J Chem Phys 1999, 110:1365-1375. – reference: Ekström U, Norman P, Carravetta V, Ågren H. Polarization propagator for X-ray spectra. Phys Rev Lett 2006, 97:143001. – reference: Ruud K, Åstrand, P-O, Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys 2000, 112:2668-2683. – reference: Gauss J, Ruud K, Helgaker T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys 1996, 105:2804-2812. – reference: Jensen HJAa, Ågren H. A direct, restricted-step, 2nd-order MC SCF program for large-scale ab initio calculations. Chem Phys 1986, 104:229-250. – reference: Ruud K, Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002, 352:533-539. – reference: Ziólkowski M, Jansík B, Kjærgaard T, Jørgensen P. Linear scaling coupled-cluster method with correlation energy based error control. J Chem Phys 2010, 133:014107. – reference: Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Multiconfigurational quadratic response functions for singlet and triplet perturbations: the phosphorescence lifetime of formaldehyde. J Chem Phys 1992, 97:9178-9187. – reference: Helgaker T, Jensen HJAa, Jørgensen, P, Olsen, J, Taylor PR. ABACUS, A Molecular Property Code. University of Oslo, Oslo, Norway; 1986. – reference: Høyvik I-M, Jansík B, Jørgensen P. Trust region minimization of orbital localization functions. J Chem Theory Comput 2012, 8:3137-3146. – reference: Christiansen O, Koch H, Halkier A, Jørgensen P, Helgaker T, Sánchez de Merás A. Large-scale calculations of excitation energies in coupled cluster theory: the singlet excited states of benzene. J Chem Phys 1996, 105:6921-6939. – reference: Halkier A, Koch H, Christiansen O, Jørgensen P, Helgaker T. First-order one-electron properties in the integral-direct coupled cluster singles and doubles model. J Chem Phys 1997, 107:849-866. – reference: Kauczor J, Jørgensen P, Norman P. On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations. J Chem Theory Comput 2011, 7:1610-1630. – reference: Koch H, Sánchez de Merás A, Pedersen TB. Reduced scaling in electronic structure calculations using Cholesky decompositions. J Chem Phys 2003, 118:9481-9484. – reference: Hettema H, Jensen HJAa, Jørgensen P, Olsen J. Quadratic response functions for a multiconfigurational self-consistent field wave-function. J Chem Phys 1992, 97:1174-1190. – reference: Jiemchooroj A, Norman P. Electronic circular dichroism spectra from the complex polarization propagator. J Chem Phys 2007, 126: 134102. – reference: Ferrighi L, Frediani L, Ruud K. Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. J Phys Chem B 2007, 111:8965-8973. – reference: Kjærgaard T, Jørgensen P, Thorvaldsen AJ, Salek P, Coriani S. Gauge-origin independent formulation and implementation of magneto-optical activity within atomic-orbital-density based Hartree-Fock and Kohn-Sham response theories. J Chem Theory Comp 2009, 5:1997-2020. – reference: Bak KL, Sauer SPA, Oddershede J, Ogilvie JF. The vibrational g factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra. Phys Chem Chem Phys 2005, 7:1747-1758. – reference: Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H. Nonlinear optical response of molecules in a nonequilibrium solvation model. J Chem Phys 1998, 109:5576-5584. – reference: Mohammed A, Ågren H, Norman P. Resonance enhanced Raman scattering from the complex electric-dipole polarizability: a theoretical study on N2. Chem Phys Lett 2009, 468:119-123. – reference: Hennum AC, Helgaker T, Klopper W. Parity-violating interaction in H2O2 calculated from density-functional theory. Chem Phys Lett 2002, 354:274-282. – reference: Peach MJG, Benfield P, Helgaker T, Tozer DJ. Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 2008, 128:044118. – reference: Coriani S, Høst S, Jansík B, Thøgersen L, Olsen J, Jørgensen P, Reine S, Pawłowski F, Helgaker T, Sałek P. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. J Chem Phys 2007, 126:154108. – reference: Mikkelsen KV, Jørgensen P, Jensen HJAa. A multiconfiguration self consistent reaction field response method. J Chem Phys 1994, 100:6597-6607. – reference: Vahtras O, Rinkevicius Z. General excitations in time-dependent density functional theory. J Chem Phys 2007, 126:114101. – reference: Tew DP, Klopper W, Neiss C, Hättig C. Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets. Phys Chem Chem Phys 2007, 9:1921-1930. – reference: Jensen HJAa, Jørgensen P, Helgaker T. Systematic determination of MCSCF equilibrium and transition structures and reaction paths. J Chem Phys 1986, 85:3917-3929. – reference: Christiansen O, Mikkelsen KV. Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. J Chem Phys 1999, 110:8348-8360. – reference: Tunell I, Rinkevicius Z, Vahtras O, Sałek P, Helgaker T, Ågren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence. J Chem Phys 2003, 119:11024-11034. – reference: Jansík B, Rizzo A, Ågren H. Response theory calculations of two-photon circular dichroism. Chem Phys Lett 2005, 414:461-467. – reference: Koch H, Sánchez de Merás A, Helgaker T, Christiansen O. The integral-direct coupled cluster singles and doubles model. J Chem Phys 1996, 104:4157-4165. – reference: Ruud K, Helgaker T, Kobayashi R, Jørgensen P, Bak KL, Jensen HJAa. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals. J Chem Phys 1994, 100:8178-8185. – reference: Jansík B, Høst S, Johansson MP, Olsen J, Jørgensen P, Helgaker T. A stepwise atomic, valence-molecular, and full-molecular optimisation of the Hartree-Fock/Kohn-Sham energy. Phys Chem Chem Phys 2009, 11:5805-5813. – reference: Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP, Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 2001, 114:10252-10264. – reference: Norman P, Bishop DM, Jensen HJAa, Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J Chem Phys 2001, 115:10323-10334. – reference: Fossgård E, Ruud K. Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals. J Comput Chem 2006, 27:326-333. – reference: Knecht S, Jensen HJAa, Fleig T. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+. J Chem Phys 2008, 128:014108. – reference: Coriani S, Fransson T, Christiansen O, Norman P. Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory. J Chem Theory Comput 2012, 8:1616-1628. – reference: Christiansen O, Koch H, Jørgensen P. Response functions in the CC3 iterative triple excitation model. J Chem Phys 1995, 103:7429-7441. – reference: Jansík B, Sałek P, Jonsson D, Vahtras O, Ågren H. Cubic response functions in time-dependent density functional theory. J Chem Phys 2005, 122:054107. – reference: White CA, Johnson BG, Gill PMW, Head-Gordon M. The continuous fast multipole method. Chem Phys Lett 1994 230:8-16. – reference: Christiansen O, Koch H, Jørgensen P. The second order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett 1995, 243:409-418. – reference: Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T. Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties. J Chem Phys 1998, 108:2801-2816. – reference: Bak KL, Hansen AaE, Ruud R, Helgaker T, Olsen J, Jørgensen P. Ab-initio calculation of electronic circular dichroism for trans-cyclooctene using London atomic orbitals. Theor Chim Acta 1995, 90:441-458. – reference: Rinkevicius Z, Telyatnyk L, Vahtras O, Ågren H. Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. J Chem Phys 2004, 121:7614-7623. – reference: Mikkelsen KV, Sylvester-Hvid KO. A molecular response method for solvated molecules in nonequlibrium solvation. J Phys Chem 1996, 100:9116-9126. – reference: Kongsted J, Osted A, Mikkelsen KV, Christiansen O. The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Mol Phys 2002, 100:1813-1828. – reference: Hättig C, Christiansen O, Jørgensen P. Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory. Chem Phys Lett 1998, 282:139-146. – reference: Jørgensen P, Jensen HJAa, Olsen J. RESPONS, A Molecular Response Code. Aarhus University, Aarhus, Denmark; 1988. – reference: Olsen J. The initial implementation and applications of a general active space coupled cluster method. J Chem Phys 2000, 113:7140-7148. – reference: Olsen J, LUCITA, A General Active Configuration Interaction Code. Aarhus University, Aarhus, Denmark; 2000. – reference: Jensen HJAa, Jørgensen P, Ågren H, Olsen J. 2nd-order Møller-Plesset perturbation-theory as a configuration and orbital generator in multiconfiguration self-consistent-field calculations. J Chem Phys 1988, 88:3834-3839 and 89:5354-5354. – reference: Sánchez de Merás AMJ, Koch H, Cuesta IG, Boman L. Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations. J Chem Phys 2010, 132:204105. – reference: Cronstrand P, Jansík B, Jonsson D, Luo Y, Ågren H. Density functional theory calculations of three-photon absorption. J Chem Phys 2004, 121:9239-9246. – reference: Vahtras O, Ågren H, Carravetta V. Natural circular dichroism in non-resonant X-ray emission. J Phys B 1997, 30:1493-1501. – reference: Åstrand P-O, Ruud K, Taylor PR. Calculation of the vibrational wave function of polyatomic molecules. J Chem Phys 2000, 112:2655-2667. – reference: Luo Y, Vahtras O, Gel'mukhanov F, Ågren H. Theory of natural circular dichroism in X-ray Raman scattering from molecules. Phys Rev A 1997, 55:2716-2722. – reference: Ruud K, Helgaker T, Bak KL, Jørgensen P, Jensen HJAa. Hartree-Fock limit magnetizabilities from London orbitals. J Chem Phys 1993, 99:3847-3859. – reference: Klopper W, Samson CCM. Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets. J Chem Phys 2002, 116:6397-6410. – reference: Jensen HJAa, Ågren H. MCSCF optimization using the direct, restricted step, second order norm-extended optimization method. Chem Phys Lett 1984, 110:140-144. – reference: Christiansen O, Koch H, Jørgensen P. Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies. J Chem Phys 1996, 105:1451-1459. – reference: Watson MA, Sałek P, Macak P, Jaszuński M, Helgaker T. The calculation of indirect nuclear spin-spin coupling constants in large molecules. Chem Eur J 2004, 10:4627-4639. – reference: Sałek P, Vahtras O, Guo J, Luo Y, Helgaker T, Ågren H. Calculations of two-photon absorption cross sections by means of density-functional theory. Chem Phys Lett 2003, 374:446-452. – reference: Ruden TA, Taylor PR, Helgaker T. Automated calculation of fundamental frequencies: application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method. J Chem Phys 2003, 119:1951-1960. – reference: Havenith RWA, Taylor PR, Angeli C, Cimiraglia R, Ruud K. Calibration of the n-electron valence state perturbation theory approach. J Chem Phys 2004, 120:4619-4625. – reference: Ruud K, Schimmelpfennig B, Ågren H. Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett 1999, 310:215-221. – reference: Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism. J Chem Phys 1993, 98:8873-8887. – reference: Norman P, Ågren H. Geometry optimization of core electron excited molecules. J Mol Struct: THEOCHEM 1997, 401:107-115. – reference: Mikkelsen KV, Cesar A, Ågren H, Jensen HJAa. Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation. J Chem Phys 1995, 103: 9010-9023. – reference: Frediani L, Ågren H, Ferrighi L, Ruud K. Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. J Chem Phys 2005, 123:144117. – reference: Helgaker T, Uggerud E, Jensen HJAa. Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation. Chem Phys Lett 1990, 173:145-150. – reference: Ligabue A, Sauer SPA, Lazzeretti P. Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. J Chem Phys 2003, 118:6830-6845. – reference: Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss 1994, 99:165-180. – reference: Norman P, Jonsson D, Vahtras O, Ågren H. Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation. Chem Phys 1996, 203, 23-42. – reference: Thorvaldsen AJ, Ruud K, Kristensen K, Jørgensen P, Coriani S. A density matrix-based quasi-energy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. J Chem Phys 2008, 129:214108. – reference: Solheim H, Ruud K, Coriani S, Norman P. Complex polarization propagator calculations of magnetic circular dichroism spectra. J Chem Phys 2008, 128:094103. – reference: Hald, K, Halkier A, Jørgensen P, Coriani S, Hättig C, Helgaker T. A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients. J Chem Phys 2003, 118:2985-2998. – reference: Rekkedal J, Coriani S, Iozzi MF, Teale AM, Helgaker T, Pedersen TB. Communcation: analytic gradients in the random-phase approximation. J Chem Phys 2013, 139:081101. – reference: Koch H, Christiansen O, Kobayashi R, Jørgensen P, Helgaker T. A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem Phys Lett 1994, 228:233-238. – reference: Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent advances in wave function-based methods of molecular-property calculations. Chem Rev 2012, 112:543-631. – reference: Kristensen K, Kauczor J, Kjærgaard T, Jørgensen P. Quasi-energy formulation of damped response theory. J Chem Phys 2009, 131:044112. – reference: Christiansen O, Bak KL, Koch H, Sauer SPA. A second-order doubles correction to excitation energies in the random phase approximation. Chem Phys Lett 1998, 284:47-55. – reference: Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P. Molecular Hessians for large-scale MCSCF wave functions. J Chem Phys 1986, 84:6266-6279. – reference: Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys 2000, 112:4173-4185. – reference: Pedersen TB, Koch H. Coupled cluster response functions revisited. J Chem Phys 1997, 106:8059-8072. – reference: Coriani S, Kjærgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp 2010, 6, 1020-1047. – reference: Jensen HJAa, Jørgensen P, Ågren H. Efficient optimization of large-scale MCSCF wave-functions with a restricted step algorithm. J Chem Phys 1987, 87:451-466. – reference: Helgaker T. Transition-state optimizations by trust-region image minimization. Chem Phys Lett 1991, 182:503-510. – reference: Coriani S, Christiansen O, Fransson T, Norman P. Coupled-cluster response theory for near-edge X-ray-absorption fine structure of atoms and molecules. Phys Rev A 2012, 85:022507. – reference: Coriani S, Helgaker T, Jørgensen P, Klopper W. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. J Chem Phys 2004, 121:6591-6598. – reference: Enevoldsen T, Oddershede J, Sauer SPA. Correlated calculations of indirect nuclear spin-spin coupling constants using second order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theor Chem Acc 1998, 100:275-284. – reference: Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P: Variational and robust density fitting of four-center two-electron integrals in local metrics. J Chem Phys 2008, 129:104101. – reference: Jansík B, Høst S, Kristensen K, Jørgensen P. Local orbitals by minimizing powers of the orbital variance. J Chem Phys 2011, 134:194104. – reference: Helgaker T, Wilson PJ, Amos RD, Handy NC. Nuclear shielding constants by density functional theory with gauge including atomic orbitals. J Chem Phys 2000, 113:2983-2989. – reference: Dyall KG. The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J Chem Phys 1995, 102:4909-4918. – reference: Ågren H, Carravetta V, Vahtras O, Pettersson LGM. Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem Phys Lett 1994, 222:75-81. – reference: Rizzo A, Ågren H. Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys 2013, 15:1198-1207. – reference: Norman P, Schimmelpfennig B, Ruud K, Jensen HJAa, Ågren H. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory. J Chem Phys 2002, 116:6914-6923. – reference: Kristensen K, Jørgensen P, Jansík B, Kjærgaard T, Reine S. Molecular gradient for second-order Møller-Plesset perturbation theory using the Divide-Expand-Consolidate (DEC) scheme. J Chem Phys 2012, 137:114102. – reference: Eriksen JJ, Sauer SPA, Mikkelsen KV, Jensen HJAa, Kongsted J. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. J Comput Chem 2012, 33:2012-2022. – reference: Packer MJ, Dalskov EK, Enevoldsen T, Jensen HJAa, Oddershede J. A new implementation of the second-order polarization propagator approximation (SOPPA): the excitation spectra of benzene and naphthalene. J Chem Phys 1996, 105: 5886-5900 . – reference: Watson MA, Sałek P, Macak P, Helgaker T. Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. J Chem Phys 2004, 121:2915-2931. – reference: Rinkevicius Z, Tunell I, Salek P, Vahtras O, Ågren H. Restricted density functional theory of linear time-dependent properties in open-shell molecules. J Chem Phys 2003, 119:34-46. – reference: Sneskov K, Schwabe T, Kongsted J, Christiansen O. The polarizable embedding coupled cluster method. J Chem Phys 2012, 134:104108-104123. – reference: Cacheiro JL, Pedersen TB, Fernández B, Sánchez de Merás A, Koch H. The CCSD(T) model with Cholesky decomposition of orbital energy denominators. Int J Quantum Chem 2011, 111:349-355. – reference: Jonsson D, Norman P, Ågren H. Cubic response functions in the multiconfiguration self-consistent field approximation. J Chem Phys 1996, 105:6401-6419. – reference: Hättig C, Christiansen O, Coriani S, Jørgensen P. Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory. J Chem Phys 1994, 109:9237-9243. – reference: Rinkevicius Z, Vahtras O, Ågren H. Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 2010, 133:114104. – reference: Hald K, Jørgensen P, Christiansen O, Koch H. Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections. J Chem Phys 2002, 116:5963-5970. – reference: 16482297 - Phys Chem Chem Phys. 2006 Feb 7;8(5):558-62 – reference: 17628096 - J Phys Chem B. 2007 Aug 2;111(30):8965-73 – reference: 15485221 - J Chem Phys. 2004 Oct 22;121(16):7614-23 – reference: 23223557 - Phys Chem Chem Phys. 2013 Jan 28;15(4):1198-207 – reference: 16238384 - J Chem Phys. 2005 Oct 8;123(14):144117 – reference: 21405157 - J Chem Phys. 2011 Mar 14;134(10):104108 – reference: 15473713 - J Chem Phys. 2004 Oct 8;121(14):6591-8 – reference: 15267824 - J Chem Phys. 2004 May 15;120(19):8887-97 – reference: 17430011 - J Chem Phys. 2007 Apr 7;126(13):134102 – reference: 17155244 - Phys Rev Lett. 2006 Oct 6;97(14):143001 – reference: 19475173 - Phys Chem Chem Phys. 2009 Jun 14;11(22):4539-48 – reference: 18190186 - J Chem Phys. 2008 Jan 7;128(1):014108 – reference: 23090588 - Phys Chem Chem Phys. 2012 Dec 5;14(45):15706-14 – reference: 23108605 - J Comput Chem. 2013 Mar 15;34(7):533-44 – reference: 15267321 - J Chem Phys. 2004 Mar 8;120(10):4619-25 – reference: 15378642 - Chemistry. 2004 Sep 20;10(18):4627-39 – reference: 20687628 - J Chem Phys. 2010 Jul 28;133(4):044102 – reference: 17381190 - J Chem Phys. 2007 Mar 21;126(11):114101 – reference: 26605725 - J Chem Theory Comput. 2012 Sep 11;8(9):3137-46 – reference: 21766930 - J Chem Phys. 2011 Jul 14;135(2):024112 – reference: 16321072 - J Chem Phys. 2005 Nov 15;123(19):194103 – reference: 15291602 - J Chem Phys. 2004 Aug 15;121(7):2915-31 – reference: 19842498 - Phys Chem Chem Phys. 2009 Jul 21;11(27):5805-13 – reference: 18681637 - J Chem Phys. 2008 Jul 28;129(4):044110 – reference: 19044902 - J Chem Phys. 2008 Sep 14;129(10):104101 – reference: 17461618 - J Chem Phys. 2007 Apr 21;126(15):154111 – reference: 26613143 - J Chem Theory Comput. 2009 Aug 11;5(8):1997-2020 – reference: 17431520 - Phys Chem Chem Phys. 2007 Apr 28;9(16):1921-30 – reference: 22685085 - J Comput Chem. 2012 Sep 30;33(25):2012-22 – reference: 18331083 - J Chem Phys. 2008 Mar 7;128(9):094103 – reference: 26596429 - J Chem Theory Comput. 2011 Jun 14;7(6):1610-30 – reference: 19063545 - J Chem Phys. 2008 Dec 7;129(21):214108 – reference: 24006965 - J Chem Phys. 2013 Aug 28;139(8):081101 – reference: 22236047 - Chem Rev. 2012 Jan 11;112(1):543-631 – reference: 17461615 - J Chem Phys. 2007 Apr 21;126(15):154108 – reference: 15538844 - J Chem Phys. 2004 Nov 15;121(19):9239-46 – reference: 15740310 - J Chem Phys. 2005 Feb 1;122(5):54107 – reference: 20515086 - J Chem Phys. 2010 May 28;132(20):204105 – reference: 18247941 - J Chem Phys. 2008 Jan 28;128(4):044118 – reference: 20568855 - J Chem Phys. 2009 Oct 21;131(15):154115 – reference: 20614959 - J Chem Phys. 2010 Jul 7;133(1):014107 – reference: 17381199 - J Chem Phys. 2007 Mar 21;126(11):114110 – reference: 20866123 - J Chem Phys. 2010 Sep 21;133(11):114104 – reference: 22998244 - J Chem Phys. 2012 Sep 21;137(11):114102 – reference: 19787935 - Phys Chem Chem Phys. 2005 Apr 21;7(8):1747-58 – reference: 21599041 - J Chem Phys. 2011 May 21;134(19):194104 – reference: 26593655 - J Chem Theory Comput. 2012 May 8;8(5):1616-28 – reference: 19045005 - J Chem Phys. 2008 Sep 28;129(12):124106 – reference: 16689563 - J Chem Phys. 2006 May 7;124(17):174103 – reference: 19655842 - J Chem Phys. 2009 Jul 28;131(4):044112 – reference: 16365846 - J Comput Chem. 2006 Feb;27(3):326-33 |
| SSID | ssj0000491231 |
| Score | 2.5948427 |
| Snippet | Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational... Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational... Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational... |
| SourceID | swepub pubmedcentral hal proquest pubmed wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 269 |
| SubjectTerms | Ab-Initio Calculations Chemical Sciences Coupled-Cluster Singles Density-Functional Theory Dynamics Electronic structure Environmental effects Frequency-Dependent Polarizabilities London Atomic Orbitals Magnetic resonance Mathematical models Mechanics (physics) Molecular dynamics Molecular modelling Molecular structure Natural Circular-Dichroism Optical activity or physical chemistry Plesset Perturbation-Theory Polarizable Continuum Model Properties Quantum chemistry Response Theory Calculations Scaling Self-Consistent-Field Software Focus TECHNOLOGY TEKNIKVETENSKAP Theoretical and UNIX |
| Title | The Dalton quantum chemistry program system |
| URI | https://api.istex.fr/ark:/67375/WNG-0G8NBRD9-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1172 https://www.ncbi.nlm.nih.gov/pubmed/25309629 https://www.proquest.com/docview/1707342779 https://www.proquest.com/docview/2007945229 https://www.proquest.com/docview/1826614147 https://hal.science/hal-01082875 https://pubmed.ncbi.nlm.nih.gov/PMC4171759 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145261 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106677 |
| Volume | 4 |
| WOSCitedRecordID | wos000334522200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0884 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFQle-P4ojCkghHiJFjt2bYun0tLtYVTTYKxvlu04tBpLoW0Gfz53SRoUMQkkXqIod47iy9n-nXP5HSGvqFeOKcrjJNci5g4wnNWZjH0GcELB-sSDrYpNyOlUzWb6ZIe83f4LU_NDtBtuODKq-RoHuHXrg9-koT_85Ro_OcL826M0VVi3gfGTdoMFoC_MylXAJYWOkXptyyyUsIO2Nawpc0yB7KFVf16HM_9Ml2xIRbt4tlqQJnf-qyt3ye0Gh0bD2nHukZ1Q3Cc3R9vybw8I5mJEY4tFp6PvJdi_vIz8Vhw1aV1RTQT9kJxN3n8aHcVNZYV4PgCAFYcgmB3Y3NtUwhKlXR4GjucZxMk6o2nuBQ-5cjS3AQBZxmw6SLz2IObOU-_TR2S3WBbhCYkcxBzMSy9VAGHqNGCqVGovhMwcY7RPXoJ9zbeaO8Mgm_XR8NjgNQgFkW5fXIHS68r8rZpdXWDGmRTmfHpokkM1fXc61ibpk73t-zHNYFsbKmGe4kxKfa0Yd2M1EseD-EUrBnPhpxFbhGUJt1AVUKFc9snj-m23z8JECnEetpYdP-j0qSspFvOKqZtTic4H3as9ptNkvPg8NMvVF3OxmUMEJiCW_Yvi10VpKGYlw1O-qRyq1avZp5lBV0ICd2bORx8-4snTf1d9Rm4BHuR1Puce2d2syvCc3PBXm8V6tV8NLzjKmdonvfHp5Oz4F24WKhE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFWm88P3RMSAghHiJFjt2HUu8lJauiC5CY2N7sxzHodW2FNpm8Odzly8UMQkk3qLcOfLH2f7d-fIzIa-ojRIWUe4HmRI-TwDDGZVK36YAJyLYn7gz5WUTMo6jszP1aYu8bf6Fqfgh2oAbzoxyvcYJjgHp_d-soT_s5RrPHGEB7nEwI7Dv3vhocjJrYyyAfmFhLn0uKZSP7GsNuVDA9tvysK3MMQuyhx378zqo-WfGZM0r2oW05Z40uf1_rblDbtVY1BtWxnOXbLn8HtkZNVfA3SeYj-GNDV487X0vYAyKS882Yq9O7fIqMugH5GTy_ng09evbFfz5AECW75xgZmAya0IJ25RKMjdIeJaCr6xSGmZWcJdFCc2MA1CWMhMOAqssiHliqbXhQ7KdL3P3mHgJ-B3MSisjB8IwUYCrQqmsEDJNGKN98hI6WH-r-DM0MlpPhzON78AdRMp9cQVKr8v-b9XM6hyzzqTQp_GBDg6i-N3RWOmgT_aaAdL1hFtrKmGt4kxKda0YI7IKyeNB_KIVQ3fh8YjJ3bKAT0QlWKFc9smjarjbujARgq-HpWXHEDpt6kryxbxk6-ZUovVB8yqT6RQZL74M9XL1VZ9v5uCFCfBn_6J4sSg0xcxkqOWb0qJavYqBmmk0JSRxZ_p0dPgZH3b_XfU52ZkeH8707EP88Qm5CfiQV_mde2R7syrcU3LDXm0W69Wzerb9AjSlLQ8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemFgEvfMMKAwJCiJdosWPXscRLaeiGKNU0GNub5TgOrbalo20Gfz53-UIRk0DiLcqdI3-c7d_Zl98R8oraKGER5X6QKeHzBDCcUan0bQpwIoL9iTtTJpuQs1l0cqIOtsjb5l-Yih-iPXDDmVGu1zjB3UWa7f5mDf1hz9d45wgLcJ9jEpke6ceHk6Npe8YC6BcW5tLnkkL5yL7WkAsFbLctD9vKHKMg-9ixP6-Cmn9GTNa8ol1IW-5Jk9v_15o75FaNRb1RZTx3yZbL75Eb4yYF3H2C8RhebDDxtPe9gDEozj3biL06tMuryKAfkKPJ-y_jfb_OruDPhwCyfOcEM0OTWRNK2KZUkrlhwrMUfGWV0jCzgrssSmhmHICylJlwGFhlQcwTS60NH5JevszdNvES8DuYlVZGDoRhogBXhVJZIWSaMEYH5CV0sL6o-DM0Mlrvj6Ya34E7iJT74hKUXpf936qZ1SlGnUmhj2d7OtiLZu8OY6WDAdlpBkjXE26tqYS1ijMp1ZViPJFVSB4P4hetGLoLr0dM7pYFfCIqwQrlckAeVcPd1oWJEHw9LC07htBpU1eSL-YlWzenEq0PmleZTKdIvPg60svVN326mYMXJsCf_Yvi2aLQFCOToZZvSotq9SoGaqbRlJDEnenj8afP-PD431Wfk-sH8URPP8w-PiE3AR7yKrxzh_Q2q8I9Jdfs5WaxXj2rJ9svf-Isig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dalton+quantum+chemistry+program+system&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Aidas%2C+Kestutis&rft.au=Angeli%2C+Celestino&rft.au=Bak%2C+Keld+L.&rft.au=Bakken%2C+Vebj%C3%B8rn&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=4&rft.issue=3&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1002%2Fwcms.1172&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0G8NBRD9_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |