Optimization methods for regularized convex formulations in machine learning
We develop efficient numerical optimization algorithms for regularized convex formulations that appear in a variety of areas such as machine learning, statistics, and signal processing. Their objective functions consist of a loss term and a regularization term, where the latter controls the complexi...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Dissertation |
| Sprache: | Englisch |
| Veröffentlicht: |
ProQuest Dissertations & Theses
01.01.2011
|
| Schlagworte: | |
| ISBN: | 9781267055095, 126705509X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!

