COALITION: CAVs-enabled Probabilistic Offloading of Congested Lanes for Reduced Urban Traffic Congestion

The number of vehicles in developed countries has grown more rapidly than available road capacity, resulting in increased congestion, air pollution, and more accidents. A recent UN report predicts that the increasing size of cities and levels of population mobility will mean 2.9 billion vehicles on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Vehicular Technology Conference s. 1 - 7
Hlavní autoři: Djahel, Soufiene, Hadjadj-Aoul, Yassine, Pincemin, Renan, Wu, Celimuge
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2023
Témata:
ISSN:2577-2465
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The number of vehicles in developed countries has grown more rapidly than available road capacity, resulting in increased congestion, air pollution, and more accidents. A recent UN report predicts that the increasing size of cities and levels of population mobility will mean 2.9 billion vehicles on the road in cities alone by 2050. To mitigate the consequences of this increase without dramatically increasing the number of built roads, novel methods to better utilise existing road capacity are required. To that end, this paper introduces COALITION, a cognitive radio-enabled probabilistic offloading of congested lanes, as an innovative solution to efficiently handle traffic congestion in urban areas. This solution builds upon and improves the performance of our previous work, named CRITIC, and makes use of Electric Connected and Autonomous Vehicles (ECAVs) features to maximize the usage of road capacity through opportunistic exploitation of under-utilized reserved lanes while fostering the use of electric vehicles to support carbon neutral transportation objectives. Simulation results have proven the effectiveness of COALITION and its potential impact in real-world scenarios.
AbstractList The number of vehicles in developed countries has grown more rapidly than available road capacity, resulting in increased congestion, air pollution, and more accidents. A recent UN report predicts that the increasing size of cities and levels of population mobility will mean 2.9 billion vehicles on the road in cities alone by 2050. To mitigate the consequences of this increase without dramatically increasing the number of built roads, novel methods to better utilise existing road capacity are required. To that end, this paper introduces COALITION, a cognitive radio-enabled probabilistic offloading of congested lanes, as an innovative solution to efficiently handle traffic congestion in urban areas. This solution builds upon and improves the performance of our previous work, named CRITIC, and makes use of Electric Connected and Autonomous Vehicles (ECAVs) features to maximize the usage of road capacity through opportunistic exploitation of under-utilized reserved lanes while fostering the use of electric vehicles to support carbon neutral transportation objectives. Simulation results have proven the effectiveness of COALITION and its potential impact in real-world scenarios.
Author Hadjadj-Aoul, Yassine
Pincemin, Renan
Wu, Celimuge
Djahel, Soufiene
Author_xml – sequence: 1
  givenname: Soufiene
  surname: Djahel
  fullname: Djahel, Soufiene
  email: s.djahel@hud.ac.uk
  organization: University of Huddersfield,UK
– sequence: 2
  givenname: Yassine
  surname: Hadjadj-Aoul
  fullname: Hadjadj-Aoul, Yassine
  email: yassine.hadjadj-aoul@irisa.fr
  organization: University of Rennes,France
– sequence: 3
  givenname: Renan
  surname: Pincemin
  fullname: Pincemin, Renan
  email: renan.pincemin@outlook.fr
  organization: Telecom Physique Strasbourg,France
– sequence: 4
  givenname: Celimuge
  surname: Wu
  fullname: Wu, Celimuge
  email: celimuge@uec.ac.jp
  organization: The University of Electro-Communications,Japan
BookMark eNo1kEFPwkAUhFejiYD8Aw9781R8u6_d7XojjShJY40pXMlreQs1dWtaPPjvwYinyUy-mcOMxVXoAgtxr2CmFLiHdZlp0BgtqG0NWFSzXztTgIipwgsxddalmABqp9PkUox0Ym2kY5PciPEwfACAUkaPxD4r5vmyXBavjzKbr4eIA1Utb-Vb31VUNW0zHJpaFt63HW2bsJOdl1kXdjwcTlROgQfpu16-8_a7PiWrvqIgy568P_XOZNOFW3HtqR14etaJWC2eyuwlyovnZTbPoz06OEQYc0xW1QixZaerhOPaoa4s1cbHRGniDaCLDRNCipVTAD7B1FiyJmWNE3H3t9sw8-arbz6p_9n8P4NHxqBbKg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTC2023-Fall60731.2023.10333813
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350329285
EISSN 2577-2465
EndPage 7
ExternalDocumentID 10333813
Genre orig-research
GroupedDBID -~X
6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-h390t-34e4a71c3047e92b5e4c932b7ac6f4aa85f603946ea3083b9100f53867a768e23
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133762500400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h390t-34e4a71c3047e92b5e4c932b7ac6f4aa85f603946ea3083b9100f53867a768e23
OpenAccessLink https://inria.hal.science/hal-04368543
PageCount 7
ParticipantIDs ieee_primary_10333813
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Vehicular Technology Conference
PublicationTitleAbbrev VTC-Fall
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
Score 2.2057605
Snippet The number of vehicles in developed countries has grown more rapidly than available road capacity, resulting in increased congestion, air pollution, and more...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cognitive Radio
Probabilistic logic
Road Traffic Congestion
Roads
Simulation
Smart Cities
Smart Transportation
Sociology
Transportation
Urban areas
Vehicular and wireless technologies
Title COALITION: CAVs-enabled Probabilistic Offloading of Congested Lanes for Reduced Urban Traffic Congestion
URI https://ieeexplore.ieee.org/document/10333813
WOSCitedRecordID wos001133762500400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aRPTiVnEnB8HT1JlJJpnxVgaLQmmLtKW3kmReVCgz0sXf70u6qAcP3oYwCSEveVvyfY-QWwtGySLlQaJd6ibVeOYE6IApo5RJ0YVXHijclp1OOhplvRVY3WNhAMA_PoOG-_R3-UVlFi5VhiecYUTlatRuSymXYK2N2o0iEe-SuxWJ5v2wn7vK4EFLTSYC97GLBWPWWA_xq5iKtyWtg3_O4pDUv1F5tLexN0dkC8pjsv-DUPCEvOXdZvvZZZ0eaN4czgLw0KjC9dOeS9fRMtOutZPKP56nlaU4_KvPetK2QsVH0Y2lL47RFVsGU61KigbNMU2s_0RR1smg9djPn4JVLYXgjWXhPGAcuJKRcbdskMU6AW7QddNSGWG5UmliRcgyLkAx9Mo0ehGhRWUopMKABGJ2SmplVcIZoQBW8EgqYGHBpREo0EInYahSrjkqgHNSd4s2_ljSZYzX63XxR_sl2fOS8nmNK1KbTxdwTXbM5_x9Nr3xQv4ChBqmyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQIJYLWxE7PiBxSklix0m4VRFVK0JbobbqrbKdCUWqEtSF72fsLsCBA7fIii3LY89mvzeE3OWgZZhF3AmUSd1ECs-cAOUwqaXUEbrw0gKF07DVigaDuLMEq1ssDADYx2dQNZ_2Lj8r9dykyvCEM4yoTI3arYBz31vAtdaK1_OEv0PulzSaD_1uYmqDO3U5HgvcySYa9Fl1NcivcirWmtQP_jmPQ1L5xuXRztriHJENKI7J_g9KwRMyStq1tGnyTo80qfWnDlhwVGb6Kcuma4iZaTvPx6V9Pk_LnOLwbzbvSVOJqo-iI0tfDacrtvQmShYUTZrhmlj9icKskF79qZs0nGU1BWfEYnfmMA5chp4292wQ-yoArtF5U6HUIudSRkEuXBZzAZKhX6bQj3BzVIcilBiSgM9OyWZRFnBGKEAuuBdKYG7GQy1QpJkKXFdGXHFUAeekYhZt-LEgzBiu1uvij_ZbstvovqTDtNl6viR7Vmo2y3FFNmeTOVyTbf05e59ObqzAvwBibKoP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=COALITION%3A+CAVs-enabled+Probabilistic+Offloading+of+Congested+Lanes+for+Reduced+Urban+Traffic+Congestion&rft.au=Djahel%2C+Soufiene&rft.au=Hadjadj-Aoul%2C+Yassine&rft.au=Pincemin%2C+Renan&rft.au=Wu%2C+Celimuge&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FVTC2023-Fall60731.2023.10333813&rft.externalDocID=10333813