Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymera...
Saved in:
| Published in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 364; no. 1517; p. 621 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
12.03.2009
|
| Subjects: | |
| ISSN: | 1471-2970, 1471-2970 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations-a phenotype similar to Poleta and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Poleta probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK(164) modification. |
|---|---|
| AbstractList | Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations-a phenotype similar to Poleta and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Poleta probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK(164) modification.Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations-a phenotype similar to Poleta and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Poleta probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK(164) modification. Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations-a phenotype similar to Poleta and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Poleta probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK(164) modification. |
| Author | Krijger, Peter H L Heideman, Marinus R van den Berk, Paul C M Jacobs, Heinz Langerak, Petra |
| Author_xml | – sequence: 1 givenname: Petra surname: Langerak fullname: Langerak, Petra organization: The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands – sequence: 2 givenname: Peter H L surname: Krijger fullname: Krijger, Peter H L – sequence: 3 givenname: Marinus R surname: Heideman fullname: Heideman, Marinus R – sequence: 4 givenname: Paul C M surname: van den Berk fullname: van den Berk, Paul C M – sequence: 5 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19008189$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAURoOMOA_dupSs3HVM0jRJ3cngCwcEH-uStjczkSYZk3Yx_94OjuDq3gvfOXzcOZr44AGhS0qWlJTqJqa-XjJC1JIwlp-gGeWSZqyUZPJvn6J5Sl-EkLKQ_AxNaTkSVJUzFN6D071t8Ha_g-iGfjyCx8Fg69zgw6YL9dBZjzfgId3iDlIKPmETg8O7GDprII6M3-AGug77oelAR6x9b0fkhQr-hg9a32NnGzhHp0Z3CS6Oc4E-H-4_Vk_Z-vXxeXW3zra5UnmmCaW8lDlwxTkpGCtE0QppgAKIAmTTGpEzTrUUrWm15EVZK1UoXQPVxtRsga5_vWPH7wFSXzmbDg21hzCkSgglRDGKF-jqGBxqB221i9bpuK_-XsR-ANFjbHc |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1098/rstb.2008.0223 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) Biology |
| EISSN | 1471-2970 |
| ExternalDocumentID | 19008189 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE ABBHK ABPLY ABTLG ABXSQ ACHIC ACPRK ACQIA ACRPL ACSFO ADBBV ADNMO ADQXQ ADULT AEUPB AEXZC AFRAH AGPVY AGQPQ AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS AQVQM AS~ BAWUL BGBPD BTFSW CGR CUY CVF DCCCD DIK E3Z EBS ECM EIF EJD F5P GX1 H13 HQ3 HTVGU HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KQ8 MRS MV1 MVM NPM NSAHA O9- OK1 ROL RPM RRY SA0 TN5 V1E W8F YNT ~02 7X8 |
| ID | FETCH-LOGICAL-h3883-a0114973e48440522565d67fe1ee65e7cdf63241a76dfda7459b8858abe1affb2 |
| IEDL.DBID | 7X8 |
| ISSN | 1471-2970 |
| IngestDate | Thu Jul 10 23:04:46 EDT 2025 Mon Jul 21 05:59:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1517 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h3883-a0114973e48440522565d67fe1ee65e7cdf63241a76dfda7459b8858abe1affb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2660925 |
| PMID | 19008189 |
| PQID | 66866552 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_66866552 pubmed_primary_19008189 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Mar-12 |
| PublicationDateYYYYMMDD | 2009-03-12 |
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-Mar-12 day: 12 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
| PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
| PublicationYear | 2009 |
| References | 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9 12415303 - Nat Rev Mol Cell Biol. 2002 Nov;3(11):859-70 17251197 - Nucleic Acids Res. 2007;35(3):881-9 10662804 - J Exp Med. 2000 Feb 7;191(3):579-84 16357261 - Science. 2005 Dec 16;310(5755):1821-4 16551259 - Annu Rev Immunol. 2006;24:541-70 9287349 - J Biol Chem. 1997 Sep 12;272(37):23360-5 16340005 - Nucleic Acids Res. 2005;33(22):e188 10982826 - Mol Cell Biol. 2000 Oct;20(19):7099-108 7915006 - Mol Cell Biol. 1994 Sep;14(9):6187-97 10373455 - J Biol Chem. 1999 Jun 25;274(26):18470-6 11316789 - Genes Dev. 2001 Apr 15;15(8):945-54 8031302 - Bioessays. 1994 Apr;16(4):253-8 14643429 - Mutat Res. 2003 Nov 27;532(1-2):59-73 4947375 - Mutat Res. 1971 Dec;13(4):319-26 8657279 - Nature. 1996 Jun 27;381(6585):751-8 11160925 - Nucleic Acids Res. 2001 Feb 15;29(4):928-35 10835623 - Nat Genet. 2000 Jun;25(2):139-40 7624801 - Science. 1995 Aug 4;269(5224):699-702 9780000 - Oncogene. 1998 Aug 20;17(7):835-43 10556591 - Mutat Res. 1999 Oct 22;435(2):111-9 11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26 17515930 - Nat Cell Biol. 2007 Jun;9(6):691-7 15229473 - Nat Rev Immunol. 2004 Jul;4(7):541-52 7892206 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1950-4 11007474 - Cell. 2000 Sep 1;102(5):553-63 11371365 - Immunity. 2001 May;14(5):643-53 16857592 - Mol Cell. 2006 Jul 21;23(2):265-71 9697843 - Immunity. 1998 Jul;9(1):135-41 11418667 - J Immunol. 2001 Jul 1;167(1):327-35 1559696 - Genomics. 1992 Mar;12(3):447-53 14578343 - J Biol Chem. 2003 Dec 26;278(52):52914-8 11484057 - Nature. 2001 Aug 2;412(6846):553-7 8274853 - Curr Opin Genet Dev. 1993 Oct;3(5):719-25 10908344 - Nucleic Acids Res. 2000 Jul 15;28(14):2847-54 12925679 - J Exp Med. 2003 Aug 18;198(4):635-43 15952890 - Annu Rev Biochem. 2005;74:317-53 15653636 - Nucleic Acids Res. 2005;33(1):356-65 15931174 - Nature. 2005 Jul 21;436(7049):428-33 12040171 - Science. 2002 May 31;296(5573):1627-30 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 14576432 - Science. 2003 Oct 24;302(5645):636-9 11007475 - Cell. 2000 Sep 1;102(5):565-75 16169844 - J Biol Chem. 2005 Nov 18;280(46):38657-65 2500405 - Int Rev Cytol. 1989;114:125-79 15196456 - Curr Opin Genet Dev. 2004 Apr;14(2):113-9 9631646 - Bioessays. 1998 Mar;20(3):195-9 10518552 - Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11922-7 11907025 - J Biol Chem. 2002 May 3;277(18):15233-6 11994423 - J Exp Med. 2002 May 6;195(9):1187-92 2660260 - Science. 1989 Jun 16;244(4910):1288-92 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 9535864 - J Biol Chem. 1998 Apr 10;273(15):8842-8 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 12401169 - Curr Biol. 2002 Oct 15;12(20):1748-55 17328676 - Annu Rev Biochem. 2007;76:1-22 16789829 - PLoS Genet. 2006 Jun;2(6):e98 9214649 - EMBO J. 1997 Jun 2;16(11):3341-8 11376341 - Nat Immunol. 2001 Jun;2(6):537-41 16489919 - Biochemistry (Mosc). 2006 Feb;71(2):155-9 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82 15169909 - Mol Cell Biol. 2004 Jun;24(12):5485-95 16990054 - DNA Repair (Amst). 2006 Dec 9;5(12):1475-88 8751446 - Nature. 1996 Aug 22;382(6593):729-31 11809771 - J Biol Chem. 2002 Apr 12;277(15):13302-11 15496986 - EMBO J. 2004 Nov 10;23(22):4484-94 1651502 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7351-5 9607915 - J Exp Med. 1998 Jun 1;187(11):1735-43 12226657 - Nature. 2002 Sep 12;419(6903):135-41 15824086 - J Exp Med. 2005 Apr 18;201(8):1191-6 15149598 - Mol Cell. 2004 May 21;14(4):491-500 18485869 - Cell. 2008 May 16;133(4):601-11 10398605 - Science. 1999 Jul 9;285(5425):263-5 17567544 - DNA Repair (Amst). 2007 Oct 1;6(10):1463-70 1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12 15710654 - J Exp Med. 2005 Feb 21;201(4):637-45 16476771 - J Exp Med. 2006 Feb 20;203(2):319-23 |
| References_xml | – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5 – reference: 10373455 - J Biol Chem. 1999 Jun 25;274(26):18470-6 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26 – reference: 9780000 - Oncogene. 1998 Aug 20;17(7):835-43 – reference: 7915006 - Mol Cell Biol. 1994 Sep;14(9):6187-97 – reference: 9535864 - J Biol Chem. 1998 Apr 10;273(15):8842-8 – reference: 10518552 - Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11922-7 – reference: 2500405 - Int Rev Cytol. 1989;114:125-79 – reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500 – reference: 11007475 - Cell. 2000 Sep 1;102(5):565-75 – reference: 1549115 - Mol Cell Biol. 1992 Apr;12(4):1605-12 – reference: 16857592 - Mol Cell. 2006 Jul 21;23(2):265-71 – reference: 12415303 - Nat Rev Mol Cell Biol. 2002 Nov;3(11):859-70 – reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 – reference: 16340005 - Nucleic Acids Res. 2005;33(22):e188 – reference: 14643429 - Mutat Res. 2003 Nov 27;532(1-2):59-73 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 1651502 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7351-5 – reference: 10835623 - Nat Genet. 2000 Jun;25(2):139-40 – reference: 10908344 - Nucleic Acids Res. 2000 Jul 15;28(14):2847-54 – reference: 16789829 - PLoS Genet. 2006 Jun;2(6):e98 – reference: 10556591 - Mutat Res. 1999 Oct 22;435(2):111-9 – reference: 8751446 - Nature. 1996 Aug 22;382(6593):729-31 – reference: 9631646 - Bioessays. 1998 Mar;20(3):195-9 – reference: 11809771 - J Biol Chem. 2002 Apr 12;277(15):13302-11 – reference: 15952890 - Annu Rev Biochem. 2005;74:317-53 – reference: 15496986 - EMBO J. 2004 Nov 10;23(22):4484-94 – reference: 12401169 - Curr Biol. 2002 Oct 15;12(20):1748-55 – reference: 7624801 - Science. 1995 Aug 4;269(5224):699-702 – reference: 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 – reference: 15169909 - Mol Cell Biol. 2004 Jun;24(12):5485-95 – reference: 15229473 - Nat Rev Immunol. 2004 Jul;4(7):541-52 – reference: 9287349 - J Biol Chem. 1997 Sep 12;272(37):23360-5 – reference: 10982826 - Mol Cell Biol. 2000 Oct;20(19):7099-108 – reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 – reference: 11316789 - Genes Dev. 2001 Apr 15;15(8):945-54 – reference: 1559696 - Genomics. 1992 Mar;12(3):447-53 – reference: 15710654 - J Exp Med. 2005 Feb 21;201(4):637-45 – reference: 16990054 - DNA Repair (Amst). 2006 Dec 9;5(12):1475-88 – reference: 11160925 - Nucleic Acids Res. 2001 Feb 15;29(4):928-35 – reference: 10662804 - J Exp Med. 2000 Feb 7;191(3):579-84 – reference: 8657279 - Nature. 1996 Jun 27;381(6585):751-8 – reference: 17515930 - Nat Cell Biol. 2007 Jun;9(6):691-7 – reference: 17251197 - Nucleic Acids Res. 2007;35(3):881-9 – reference: 11371365 - Immunity. 2001 May;14(5):643-53 – reference: 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9 – reference: 11418667 - J Immunol. 2001 Jul 1;167(1):327-35 – reference: 16476771 - J Exp Med. 2006 Feb 20;203(2):319-23 – reference: 11007474 - Cell. 2000 Sep 1;102(5):553-63 – reference: 12040171 - Science. 2002 May 31;296(5573):1627-30 – reference: 8031302 - Bioessays. 1994 Apr;16(4):253-8 – reference: 16489919 - Biochemistry (Mosc). 2006 Feb;71(2):155-9 – reference: 17567544 - DNA Repair (Amst). 2007 Oct 1;6(10):1463-70 – reference: 2660260 - Science. 1989 Jun 16;244(4910):1288-92 – reference: 9607915 - J Exp Med. 1998 Jun 1;187(11):1735-43 – reference: 11484057 - Nature. 2001 Aug 2;412(6846):553-7 – reference: 11994423 - J Exp Med. 2002 May 6;195(9):1187-92 – reference: 14576432 - Science. 2003 Oct 24;302(5645):636-9 – reference: 15653636 - Nucleic Acids Res. 2005;33(1):356-65 – reference: 16169844 - J Biol Chem. 2005 Nov 18;280(46):38657-65 – reference: 15196456 - Curr Opin Genet Dev. 2004 Apr;14(2):113-9 – reference: 7892206 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1950-4 – reference: 8274853 - Curr Opin Genet Dev. 1993 Oct;3(5):719-25 – reference: 11376341 - Nat Immunol. 2001 Jun;2(6):537-41 – reference: 12925679 - J Exp Med. 2003 Aug 18;198(4):635-43 – reference: 11907025 - J Biol Chem. 2002 May 3;277(18):15233-6 – reference: 4947375 - Mutat Res. 1971 Dec;13(4):319-26 – reference: 16551259 - Annu Rev Immunol. 2006;24:541-70 – reference: 15824086 - J Exp Med. 2005 Apr 18;201(8):1191-6 – reference: 9697843 - Immunity. 1998 Jul;9(1):135-41 – reference: 17328676 - Annu Rev Biochem. 2007;76:1-22 – reference: 18485869 - Cell. 2008 May 16;133(4):601-11 – reference: 15931174 - Nature. 2005 Jul 21;436(7049):428-33 – reference: 9214649 - EMBO J. 1997 Jun 2;16(11):3341-8 – reference: 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82 – reference: 14578343 - J Biol Chem. 2003 Dec 26;278(52):52914-8 |
| SSID | ssj0009574 |
| Score | 1.9026818 |
| Snippet | Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 621 |
| SubjectTerms | Animals DNA Mutational Analysis DNA Repair DNA-Directed DNA Polymerase - metabolism Mice Mice, Mutant Strains Models, Genetic Nucleotidyltransferases - metabolism Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Somatic Hypermutation, Immunoglobulin - genetics Ubiquitination |
| Title | Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19008189 https://www.proquest.com/docview/66866552 |
| Volume | 364 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcH33hRd30_c_Cgh7Kbpk0TEUTERVAX8cXelrRN3AVt110V_PbOtF3xIh689NYS0sk_M5nJbwD2eYKxsQ1wfcvEeAEdNGnCa8vAuVQ3teNFj6XHq6jdVp2OvpmA4_FdGCqrHGtiIdRpntAZeUNKIrOF_sng1aOeUZRbrRpoTMK0QEeGCrqijvqB3C0YzBzl1_N11PxGNqoGOlZxVUfpU6Oi35zLYpNpLf5veEuwUDmX7LS0hhpM2KwOs2W7yc86zF1XifQ61Ko1PWIHFXj6cBnyu7wAuLIeBqfDl_cyS89yx_p0iyQneAgVrrMnEsgj9owqiUbL6IoKG1D7H0eIZtwMGeUDWEasZDNk-POI-XmJMdMto89mb-wFBWoFHlrn92cXXtWQwesJpYRnKHrSkbCBCtDRQymQYSojZ7m1MrRRkjqiv3MTydSlJgpCHSsVKhNbbpyL_VWYyvLMrgNLjeSxUE0tLA9sKDSBKoXPXWhMagO-AXvjee6iwdOoTWbz91F3PNMbsFb-qu6g5HJ00bchQJ_e_PPdLZgvs0LC4_42TDtc6nYHZpKPt_5ouFvYET7bN9df-mzS0A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Somatic+hypermutation+of+immunoglobulin+genes%3A+lessons+from+proliferating+cell+nuclear+antigenK164R+mutant+mice&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Langerak%2C+Petra&rft.au=Krijger%2C+Peter+H+L&rft.au=Heideman%2C+Marinus+R&rft.au=van+den+Berk%2C+Paul+C+M&rft.date=2009-03-12&rft.eissn=1471-2970&rft.volume=364&rft.issue=1517&rft.spage=621&rft_id=info:doi/10.1098%2Frstb.2008.0223&rft_id=info%3Apmid%2F19008189&rft_id=info%3Apmid%2F19008189&rft.externalDocID=19008189 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2970&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2970&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2970&client=summon |