Why Globally Re-shuffle? Revisiting Data Shuffling in Large Scale Deep Learning
Stochastic gradient descent (SGD) is the most prevalent algorithm for training Deep Neural Networks (DNN). SGD iterates the input data set in each training epoch processing data samples in a random access fashion. Because this puts enormous pressure on the I/O subsystem, the most common approach to...
Gespeichert in:
| Veröffentlicht in: | Proceedings - IEEE International Parallel and Distributed Processing Symposium S. 1085 - 1096 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2022
|
| Schlagworte: | |
| ISSN: | 1530-2075 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!