Cut Query Algorithms with Star Contraction

We study the complexity of determining the edge connectivity of a simple graph with cut queries. We show that (i) there is a bounded-error randomized algorithm that computes edge connectivity with O(n) cut queries, and (ii) there is a bounded-error quantum algorithm that computes edge connectivity w...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / annual Symposium on Foundations of Computer Science pp. 507 - 518
Main Authors: Apers, Simon, Efron, Yuval, Gawrychowski, Pawel, Lee, Troy, Mukhopadhyay, Sagnik, Nanongkai, Danupon
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2022
Subjects:
ISSN:2575-8454
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the complexity of determining the edge connectivity of a simple graph with cut queries. We show that (i) there is a bounded-error randomized algorithm that computes edge connectivity with O(n) cut queries, and (ii) there is a bounded-error quantum algorithm that computes edge connectivity with \tilde{O}(\sqrt{}n) cut queries. To prove these results we introduce a new technique, called star contraction, to randomly contract edges of a graph while preserving non-trivial minimum cuts. In star contraction vertices randomly contract an edge incident on a small set of randomly chosen "center" vertices. In contrast to the related 2-out contraction technique of Ghaffari, Nowicki, and Thorup [SODA'20], star contraction only contracts vertex-disjoint star subgraphs, which allows it to be efficiently implemented via cut queries. The O(n) bound from item (i) was not known even for the simpler problem of connectivity, and it improves the O(n\log^{3}n) upper bound by Rubinstein, Schramm, and Weinberg [ITCS'18]. The bound is tight under the reasonable conjecture that the randomized communication complexity of connectivity is \Omega(n\log n), an open question since the seminal work of Babai, Frankl, and Simon [FOCS'86]. The bound also excludes using edge connectivity on simple graphs to prove a superlinear randomized query lower bound for minimizing a symmetric submodular function. The quantum algorithm from item (ii) gives a nearlyquadratic separation with the randomized complexity, and addresses an open question of Lee, Santha, and Zhang [SODA'21]. The algorithm can alternatively be viewed as computing the edge connectivity of a simple graph with \tilde{O}(\sqrt{}n) matrix-vector multiplication queries to its adjacency matrix. Finally, we demonstrate the use of star contraction outside of the cut query setting by designing a one-pass semi-streaming algorithm for computing edge connectivity in the complete vertex arrival setting. This contrasts with the edge arrival setting where two passes are required.
ISSN:2575-8454
DOI:10.1109/FOCS54457.2022.00055