A Min-plus-SDDP Algorithm for Deterministic Multistage Convex Programming
We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone app...
Saved in:
| Published in: | Proceedings of the IEEE Conference on Decision & Control pp. 3334 - 3339 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2019
|
| Subjects: | |
| ISSN: | 2576-2370 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone approximations of the value functions as a pointwise supremum or infimum of basic functions (for example affine or quadratic) which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest. Then we study a linear-quadratic optimal control problem with one control constraint. On this toy example we show how to use our algorithm in order to build lower approximations, like the SDDP algorithm, as supremum of affine cuts and upper approximations, by min-plus techniques, as infimum of quadratic fonctions. |
|---|---|
| AbstractList | We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone approximations of the value functions as a pointwise supremum or infimum of basic functions (for example affine or quadratic) which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest. Then we study a linear-quadratic optimal control problem with one control constraint. On this toy example we show how to use our algorithm in order to build lower approximations, like the SDDP algorithm, as supremum of affine cuts and upper approximations, by min-plus techniques, as infimum of quadratic fonctions. |
| Author | Chancelier, Jean-Philippe Tran, Benoit Akian, Marianne |
| Author_xml | – sequence: 1 givenname: Marianne surname: Akian fullname: Akian, Marianne organization: INRIA and CMAP, École polytechnique,Palaiseau Cedex,France,91128 – sequence: 2 givenname: Jean-Philippe surname: Chancelier fullname: Chancelier, Jean-Philippe organization: CERMICS, École des Ponts ParisTech,Marne-la-Vallée,France,77455 – sequence: 3 givenname: Benoit surname: Tran fullname: Tran, Benoit organization: CERMICS, École des Ponts ParisTech, INRIA and CMAP, École polytechnique,Marne-la-Vallée,France,77455 |
| BookMark | eNotj91Kw0AUhFdRsKk-gQj7Aonn7CbZ3cuQ-FNosaBel21ykq7kp2xS0bc3YK_mYxiGmYBd9UNPjD0gRIhgHvMijwFEHAlAExkQ2sjkggWohEaURptLthCJSkMhFdywYBy_AKQxsVywVcY3rg-P7WkM34tiy7O2GbybDh2vB88Lmsh3rnfj5Eq-ObXTTLYhng_9N_3wrR8ab7s50dyy69q2I92ddck-n58-8tdw_fayyrN1eBA6nsLKIhmEUiuh5glkIC1rK0GjLG0qqj1ZEpTGtQaV1FhpscckrZSZGWZbLtn9f68jot3Ru8763935tvwDi-BOOw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CDC40024.2019.9028935 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728113989 9781728113982 |
| EISSN | 2576-2370 |
| EndPage | 3339 |
| ExternalDocumentID | 9028935 |
| Genre | orig-research |
| GroupedDBID | 29P 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-h284t-da1e910c8727994e906cfa30813ca62dbeae2e64f8075f1d82b156d79f1d064f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560779003011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 06:01:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h284t-da1e910c8727994e906cfa30813ca62dbeae2e64f8075f1d82b156d79f1d064f3 |
| OpenAccessLink | https://inria.hal.science/hal-02436343 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9028935 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Dec. |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the IEEE Conference on Decision & Control |
| PublicationTitleAbbrev | CDC |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039943 |
| Score | 1.7136059 |
| Snippet | We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3334 |
| SubjectTerms | Approximation algorithms Cost function Deterministic multistage optimization problems Dynamic programming Heuristic algorithms min-plus algebra Optimal control Optimized production technology Stochastic Dual Dynamic Programming tropical algebra |
| Title | A Min-plus-SDDP Algorithm for Deterministic Multistage Convex Programming |
| URI | https://ieeexplore.ieee.org/document/9028935 |
| WOSCitedRecordID | wos000560779003011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwEFy1FQe48GgRb_nAEfdhp3V8rBIqOFBVAqTeqsRZt0glqUqL-HzWbiggceFmRU4ib6TMOJmZBbgmSotG25AbIQ0PhJHcOYo5Epsggo-6jYlvNqGGw3A81qMK3Gy9MIjoxWfYdEP_Lz8rzNp9Kmu5pBEtu1WoKqU2Xq2vty7hbCBLh06nrVtRHAUOf5x4SzfLE391UPEAMtj_360PoPHtxGOjLcYcQgXzI9j7ESJYh_s-e3jJ-WK-fuOPcTxi_fm0oC3_7JURIWVxqXfxgczM-22JEE6RRU5v_uGu7gRaNGPagOfB7VN0x8sGCXxGqLLiWdJBgnsTEgmh9VNhe8YmklBemqQnshQTFNgLrEsctp0sFClt1zKlaUxUxMpjqOVFjifAUkXENaApVrYDo4JEGgL6NJU2k10rxCnUXVEmi00GxqSsx9nfh89h19V9I_u4gNpqucZL2DHvtMTllX9wn81omTQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAFHxBNFEvfqDx2z14dIHuLv04EiqBCIRETLiRdvsWTLAQBOPP922pqIkXb5tm22Zfk85sOzMP4I4oLerA-FwLqbkSWnLrKOZIbIIIPgZVjLJmE16v5w-HQb8A9xsvDCJm4jMs22H2Lz-Z6ZX9VFaxSSOBrG3Bdk0p4azdWl_vXUJaJXOPjlMNKo2woSwCWflWUM5P_dVDJYOQ5sH_bn4IJ99ePNbfoMwRFDA9hv0fMYIlaNdZ9yXl8-nqjT-FYZ_Vp-MZbfonr4woKQtzxUsWycwyxy1RwjGyhlWcf9irW4kWzRifwHPzYdBo8bxFAp8Qrix5EjlIgK99oiG0fiqtq00kCeeljlyRxBihQFcZmzlsnMQXMW3YEi-gMZERI0-hmM5SPAMWe0RdFU0xsqq0pyKpCerjWJpE1owQ51CyRRnN1ykYo7weF38fvoXd1qDbGXXavcdL2BPWNGAbL7hXUFwuVngNO_qdlru4yR7iJ_Z0nIE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=A+Min-plus-SDDP+Algorithm+for+Deterministic+Multistage+Convex+Programming&rft.au=Akian%2C+Marianne&rft.au=Chancelier%2C+Jean-Philippe&rft.au=Tran%2C+Benoit&rft.date=2019-12-01&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=3334&rft.epage=3339&rft_id=info:doi/10.1109%2FCDC40024.2019.9028935&rft.externalDocID=9028935 |