A Min-plus-SDDP Algorithm for Deterministic Multistage Convex Programming

We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone app...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE Conference on Decision & Control pp. 3334 - 3339
Main Authors: Akian, Marianne, Chancelier, Jean-Philippe, Tran, Benoit
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2019
Subjects:
ISSN:2576-2370
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone approximations of the value functions as a pointwise supremum or infimum of basic functions (for example affine or quadratic) which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest. Then we study a linear-quadratic optimal control problem with one control constraint. On this toy example we show how to use our algorithm in order to build lower approximations, like the SDDP algorithm, as supremum of affine cuts and upper approximations, by min-plus techniques, as infimum of quadratic fonctions.
AbstractList We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject to non-stationary linear dynamics and convex costs. In this general framework, we present a stochastic algorithm which generates monotone approximations of the value functions as a pointwise supremum or infimum of basic functions (for example affine or quadratic) which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest. Then we study a linear-quadratic optimal control problem with one control constraint. On this toy example we show how to use our algorithm in order to build lower approximations, like the SDDP algorithm, as supremum of affine cuts and upper approximations, by min-plus techniques, as infimum of quadratic fonctions.
Author Chancelier, Jean-Philippe
Tran, Benoit
Akian, Marianne
Author_xml – sequence: 1
  givenname: Marianne
  surname: Akian
  fullname: Akian, Marianne
  organization: INRIA and CMAP, École polytechnique,Palaiseau Cedex,France,91128
– sequence: 2
  givenname: Jean-Philippe
  surname: Chancelier
  fullname: Chancelier, Jean-Philippe
  organization: CERMICS, École des Ponts ParisTech,Marne-la-Vallée,France,77455
– sequence: 3
  givenname: Benoit
  surname: Tran
  fullname: Tran, Benoit
  organization: CERMICS, École des Ponts ParisTech, INRIA and CMAP, École polytechnique,Marne-la-Vallée,France,77455
BookMark eNotj91Kw0AUhFdRsKk-gQj7Aonn7CbZ3cuQ-FNosaBel21ykq7kp2xS0bc3YK_mYxiGmYBd9UNPjD0gRIhgHvMijwFEHAlAExkQ2sjkggWohEaURptLthCJSkMhFdywYBy_AKQxsVywVcY3rg-P7WkM34tiy7O2GbybDh2vB88Lmsh3rnfj5Eq-ObXTTLYhng_9N_3wrR8ab7s50dyy69q2I92ddck-n58-8tdw_fayyrN1eBA6nsLKIhmEUiuh5glkIC1rK0GjLG0qqj1ZEpTGtQaV1FhpscckrZSZGWZbLtn9f68jot3Ru8763935tvwDi-BOOw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC40024.2019.9028935
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728113989
9781728113982
EISSN 2576-2370
EndPage 3339
ExternalDocumentID 9028935
Genre orig-research
GroupedDBID 29P
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h284t-da1e910c8727994e906cfa30813ca62dbeae2e64f8075f1d82b156d79f1d064f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560779003011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 06:01:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h284t-da1e910c8727994e906cfa30813ca62dbeae2e64f8075f1d82b156d79f1d064f3
OpenAccessLink https://inria.hal.science/hal-02436343
PageCount 6
ParticipantIDs ieee_primary_9028935
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.7136059
Snippet We consider discrete time optimal control problems with finite horizon involving continuous states and possibly both continuous and discrete controls, subject...
SourceID ieee
SourceType Publisher
StartPage 3334
SubjectTerms Approximation algorithms
Cost function
Deterministic multistage optimization problems
Dynamic programming
Heuristic algorithms
min-plus algebra
Optimal control
Optimized production technology
Stochastic Dual Dynamic Programming
tropical algebra
Title A Min-plus-SDDP Algorithm for Deterministic Multistage Convex Programming
URI https://ieeexplore.ieee.org/document/9028935
WOSCitedRecordID wos000560779003011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwEFy1FQe48GgRb_nAEfdhp3V8rBIqOFBVAqTeqsRZt0glqUqL-HzWbiggceFmRU4ib6TMOJmZBbgmSotG25AbIQ0PhJHcOYo5Epsggo-6jYlvNqGGw3A81qMK3Gy9MIjoxWfYdEP_Lz8rzNp9Kmu5pBEtu1WoKqU2Xq2vty7hbCBLh06nrVtRHAUOf5x4SzfLE391UPEAMtj_360PoPHtxGOjLcYcQgXzI9j7ESJYh_s-e3jJ-WK-fuOPcTxi_fm0oC3_7JURIWVxqXfxgczM-22JEE6RRU5v_uGu7gRaNGPagOfB7VN0x8sGCXxGqLLiWdJBgnsTEgmh9VNhe8YmklBemqQnshQTFNgLrEsctp0sFClt1zKlaUxUxMpjqOVFjifAUkXENaApVrYDo4JEGgL6NJU2k10rxCnUXVEmi00GxqSsx9nfh89h19V9I_u4gNpqucZL2DHvtMTllX9wn81omTQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAFHxBNFEvfqDx2z14dIHuLv04EiqBCIRETLiRdvsWTLAQBOPP922pqIkXb5tm22Zfk85sOzMP4I4oLerA-FwLqbkSWnLrKOZIbIIIPgZVjLJmE16v5w-HQb8A9xsvDCJm4jMs22H2Lz-Z6ZX9VFaxSSOBrG3Bdk0p4azdWl_vXUJaJXOPjlMNKo2woSwCWflWUM5P_dVDJYOQ5sH_bn4IJ99ePNbfoMwRFDA9hv0fMYIlaNdZ9yXl8-nqjT-FYZ_Vp-MZbfonr4woKQtzxUsWycwyxy1RwjGyhlWcf9irW4kWzRifwHPzYdBo8bxFAp8Qrix5EjlIgK99oiG0fiqtq00kCeeljlyRxBihQFcZmzlsnMQXMW3YEi-gMZERI0-hmM5SPAMWe0RdFU0xsqq0pyKpCerjWJpE1owQ51CyRRnN1ykYo7weF38fvoXd1qDbGXXavcdL2BPWNGAbL7hXUFwuVngNO_qdlru4yR7iJ_Z0nIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=A+Min-plus-SDDP+Algorithm+for+Deterministic+Multistage+Convex+Programming&rft.au=Akian%2C+Marianne&rft.au=Chancelier%2C+Jean-Philippe&rft.au=Tran%2C+Benoit&rft.date=2019-12-01&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=3334&rft.epage=3339&rft_id=info:doi/10.1109%2FCDC40024.2019.9028935&rft.externalDocID=9028935