Trajectory-based Algorithm Selection with Warm-starting

Landscape-aware algorithm selection approaches have so far mostly been relying on landscape feature extraction as a preprocessing step, independent of the execution of optimization algorithms in the portfolio. This introduces a significant overhead in computational cost for many practical applicatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 8
Hlavní autoři: Jankovic, Anja, Vermetten, Diederick, Kostovska, Ana, de Nobel, Jacob, Eftimov, Tome, Doerr, Carola
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 18.07.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Landscape-aware algorithm selection approaches have so far mostly been relying on landscape feature extraction as a preprocessing step, independent of the execution of optimization algorithms in the portfolio. This introduces a significant overhead in computational cost for many practical applications, as features are extracted and computed via sampling and evaluating the problem instance at hand, similarly to what the optimization algorithm would perform anyway within its search trajectory. As suggested in [Jankovic et al., EvoAPP 2021], trajectory-based algorithm selection circumvents the problem of costly feature extraction by computing landscape features from points that a solver sampled and evaluated during the optimization process. Features computed in this manner are used to train algorithm performance regression models, upon which a per-run algorithm selector is then built. In this work, we apply the trajectory-based approach onto a portfolio of five algorithms. We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances after a fixed budget of function evaluations. We rely on landscape features of the problem instance computed using one portion of the aforementioned budget of the same function evaluations. Moreover, we consider the possibility of switching between the solvers once, which requires them to be warm-started, i.e. when we switch, the second solver continues the optimization process already being initialized appropriately by making use of the information collected by the first solver. In this new context, we show promising performance of the trajectory-based per-run algorithm selection with warm-starting.
AbstractList Landscape-aware algorithm selection approaches have so far mostly been relying on landscape feature extraction as a preprocessing step, independent of the execution of optimization algorithms in the portfolio. This introduces a significant overhead in computational cost for many practical applications, as features are extracted and computed via sampling and evaluating the problem instance at hand, similarly to what the optimization algorithm would perform anyway within its search trajectory. As suggested in [Jankovic et al., EvoAPP 2021], trajectory-based algorithm selection circumvents the problem of costly feature extraction by computing landscape features from points that a solver sampled and evaluated during the optimization process. Features computed in this manner are used to train algorithm performance regression models, upon which a per-run algorithm selector is then built. In this work, we apply the trajectory-based approach onto a portfolio of five algorithms. We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances after a fixed budget of function evaluations. We rely on landscape features of the problem instance computed using one portion of the aforementioned budget of the same function evaluations. Moreover, we consider the possibility of switching between the solvers once, which requires them to be warm-started, i.e. when we switch, the second solver continues the optimization process already being initialized appropriately by making use of the information collected by the first solver. In this new context, we show promising performance of the trajectory-based per-run algorithm selection with warm-starting.
Author de Nobel, Jacob
Jankovic, Anja
Vermetten, Diederick
Eftimov, Tome
Kostovska, Ana
Doerr, Carola
Author_xml – sequence: 1
  givenname: Anja
  surname: Jankovic
  fullname: Jankovic, Anja
  email: Anja.Jankovic@lip6.fr
  organization: CNRS, LIP6, Sorbonne Université,Paris,France
– sequence: 2
  givenname: Diederick
  surname: Vermetten
  fullname: Vermetten, Diederick
  email: d.l.vermetten@liacs.leidenuniv.nl
  organization: Leiden University,Netherlands
– sequence: 3
  givenname: Ana
  surname: Kostovska
  fullname: Kostovska, Ana
  email: ana.kostovska@ijs.si
  organization: Jožef Stefan Institute, Jožef Stefan International Postgraduate School,Department of Knowledge Technologies,Ljubljana,Slovenia
– sequence: 4
  givenname: Jacob
  surname: de Nobel
  fullname: de Nobel, Jacob
  email: j.p.de.nobel@liacs.leidenuniv.nl
  organization: Leiden University,Netherlands
– sequence: 5
  givenname: Tome
  surname: Eftimov
  fullname: Eftimov, Tome
  email: tome.eftimov@ijs.si
  organization: Jožef Stefan Institute,Computer Systems Department,Ljubljana,Slovenia
– sequence: 6
  givenname: Carola
  surname: Doerr
  fullname: Doerr, Carola
  email: Carola.Doerr@lip6.fr
  organization: CNRS, LIP6, Sorbonne Université,Paris,France
BookMark eNotj9tKw0AURUdQUGu-QIT8wMQz95nHEuoFCj5Y8bGcJCdtSi4yGZD-vQH7tNhs1oZ9z67HaSTGngQUQkB4LjelMWBNIUHKIni3QF6xLDgvrDXaOvDulmXzfAIA6SVoZe-Y20U8UZ2meOYVztTk6_4wxS4dh_yT-qXppjH_XXL-jXHgc8KYuvHwwG5a7GfKLlyxr5fNrnzj24_X93K95UfpdeJS2kYHpVFXAS2B91C3RKRNS0KBtIhYW3KNp9AKqiuqgjEavUVFWrRqxR7_d7vF2v_EbsB43l_uqT9mPUib
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC55065.2022.9870222
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665467087
1665467088
EndPage 8
ExternalDocumentID 9870222
Genre orig-research
GrantInformation_xml – fundername: EC
  grantid: 952215 (TAILOR)
  funderid: 10.13039/501100000780
– fundername: Slovenian Research Agency
  grantid: P2-0098,P2-0103,PR-09773
  funderid: 10.13039/501100004329
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-h284t-226d4934a4b9a6e0880cfeee45fe13026aaac6e7d8e9f1ecbeb9554a86a3e41f3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859282000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:19:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h284t-226d4934a4b9a6e0880cfeee45fe13026aaac6e7d8e9f1ecbeb9554a86a3e41f3
OpenAccessLink https://hal.sorbonne-universite.fr/hal-03774161
PageCount 8
ParticipantIDs ieee_primary_9870222
PublicationCentury 2000
PublicationDate 2022-July-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-18
  day: 18
PublicationDecade 2020
PublicationTitle 2022 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002820436
Score 1.9226768
Snippet Landscape-aware algorithm selection approaches have so far mostly been relying on landscape feature extraction as a preprocessing step, independent of the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms black-box optimization
Computational modeling
dynamic algorithm selection
evolutionary computation
exploratory landscape analysis
Feature extraction
Heuristic algorithms
Prediction algorithms
Predictive models
Search problems
Switches
Title Trajectory-based Algorithm Selection with Warm-starting
URI https://ieeexplore.ieee.org/document/9870222
WOSCitedRecordID wos000859282000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sGTSit-swePpt3vbI5SWjxIKajYW5lNJq1iW6lbwX_vJF0qghdvYSHsZgJ581523gBcY2ZQRliKuNQJExQsBIbGCiYTNsxKxdzHW-bfy9GomEzUuAE3u1oYIvI_n1HXDf1dvlnpjZPKesyPHT9pQlPKfFurtdNTmDo4N_W6SCcKVa8_6HP6nWdMAuO4W8_91UTFY8jw4H9vP4TOTzFeMN7BzBE0aNkGyRjz6gX3L-GAyAS3b7MVE_35InjwrW043oETWYNnXC8E54DOLmDWgafh4LF_J-oeCGLOwFEJzo5MqpIU01JhTnwmhNryp6WZJXfnmCOizkmagpSNSJfE8c1SLHJMKI1scgyt5WpJJxDEiVXk-8QzLstModGG0wFnuE6xMvkptN2ip-9bm4tpvd6zvx-fw76Lq5M5o-ICWtV6Q5ewpz-rl4_1ld-bb166j-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf7sGjafcj2d0cpbRUrKVgxd5KdjNpFduV2gr-eyfpUhG8eAsLYTcTyJv3svMG4FoJrZJAZSzM8ogIikqZ8rVhRCaMLzJJ3MdZ5veSfj8djeSgAjebWhhEdD-fYcMO3V2-LvKVlcqaxI8tP9mCbcF56K-rtTaKCpEH66delukEvmy22i1KwGNBNDAMG-XsX21UHIp09v_3_gOo_5TjeYMN0BxCBec1SAhlXp3k_sUsFGnv9m1SENWfzrxH19yGIu5ZmdV7VosZoyzQGgZM6vDUaQ9bXVZ2QWBTgo4lo_xIcxlxxTOpYqRTwc8NfRoXBu2tY6yUymNMdIrSBJhnSBEWXKWxipAHJjqC6ryY4zF4YWQkuk7xhMyJkErnmhICa7mOodTxCdTsosfva6OLcbne078fX8Fud_jQG_fu-vdnsGdjbEXPID2H6nKxwgvYyT-XLx-LS7dP3w28ky8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Trajectory-based+Algorithm+Selection+with+Warm-starting&rft.au=Jankovic%2C+Anja&rft.au=Vermetten%2C+Diederick&rft.au=Kostovska%2C+Ana&rft.au=de+Nobel%2C+Jacob&rft.date=2022-07-18&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC55065.2022.9870222&rft.externalDocID=9870222