Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances-an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unl...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 13974 - 13983 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2021
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances-an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5 i , our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation. |
|---|---|
| AbstractList | We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances-an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5 i , our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation. |
| Author | Ayed, Ismail Ben Kervadec, Hoel Dolz, Jose Boudiaf, Malik Masud, Ziko Imtiaz Piantanida, Pablo |
| Author_xml | – sequence: 1 givenname: Malik surname: Boudiaf fullname: Boudiaf, Malik email: malik.boudiaf.1@etsmtl.net organization: ÉTS Montreal – sequence: 2 givenname: Hoel surname: Kervadec fullname: Kervadec, Hoel organization: ÉTS Montreal – sequence: 3 givenname: Ziko Imtiaz surname: Masud fullname: Masud, Ziko Imtiaz organization: ÉTS Montreal – sequence: 4 givenname: Pablo surname: Piantanida fullname: Piantanida, Pablo organization: Université Paris-Saclay,CentraleSupélec-CNRS – sequence: 5 givenname: Ismail Ben surname: Ayed fullname: Ayed, Ismail Ben organization: ÉTS Montreal – sequence: 6 givenname: Jose surname: Dolz fullname: Dolz, Jose organization: ÉTS Montreal |
| BookMark | eNotzMtOAjEUgOFqNBGQJ9BFX2Cwp1fqxhAiSIKXCGqMC1I6pzAGWjJTNL69JLr6_9XXJicxRSTkElgPgNmr4evTs9RSmB5nHHoMhNFHpA1aKykVs_yYtIBpUWgL9ox0m-aTMSY4gLb9FvkY4XcxW6dMZ7jaYswuVynStyqv0z7Te8yumKKrYxVX13RAxymVdF672JR7n6svpJMYsMboD9fQwWZD39OePiCWN-fkNLhNg93_dsjL6HY-vCumj-PJcDAt1rwvciEdl9IHCEFzKP3S2aCtFShRGM-VCWZpgjMBwEOpZMkdD8oqwNDXzIul6JCLP7dCxMWurrau_llYZQw_OL-VvVUG |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR46437.2021.01376 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665445092 9781665445092 |
| EISSN | 1063-6919 |
| EndPage | 13983 |
| ExternalDocumentID | 9577299 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-h283t-4a244cf1ff621dcba9f6993e4e37c257f7b7fa7f11c1d54d2a2f5951ef860c3b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742075004019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h283t-4a244cf1ff621dcba9f6993e4e37c257f7b7fa7f11c1d54d2a2f5951ef860c3b3 |
| OpenAccessLink | https://hal.science/hal-03979797 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9577299 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6002963 |
| Snippet | We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances-an aspect often overlooked in the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 13974 |
| SubjectTerms | Benchmark testing Codes Computer vision Entropy Feature extraction Image segmentation Training |
| Title | Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need? |
| URI | https://ieeexplore.ieee.org/document/9577299 |
| WOSCitedRecordID | wos000742075004019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCECkbxR3rw6ICu3bp6MYSIkigh4g8SD2RrX4EENwND_33bbZkx8eKlaXp5SV_6vu-1_d5D6MKjwncDqRwvMgPTrhUrS-0ooErzIAIv9_Q9H42C6VSMK-iy1MIAQPb5DNp2mr3lq0Ru7VVZR3iWC4oqqnLu51qt8j6FmkzGF0GhjiNd0em_jB-ZfZcyWaBL2ra2nv-rh0oGIYP6_4zvoeaPFg-PS5TZRxWID1C9II-4OJqbBnobwJczWSQpnsD8vVAUxfh1mS6SbYofIA2dopjq_Ar38G2SKJwhla34amIeHpb2hhvcW62wiQR4ZOxeN9Hz4Oapf-cUnROchaELqcNCg9pSE619lygZhUL7hogAA8qlOaSaR1yHXBMiifKYckNXe4ZrgQ78rqQRPUS1OInhCGFFCUShR5U0iaDWIAz_YowLUCGThk8co4bdq9lHXhxjVmxT6-_lE7RrnZH_tTpFtXS9hTO0Iz_T5WZ9nnn0G39WosU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSECsbf9uDRAVu7H_ViCBEhwkIElcQD2dpXIMHNwNB_33ZbZky8eGmaXl7Sl77ve22_9xC6tglzLI8Lww7VQKWlxcpcGgKIkK4Xgp15uu_6vjeZsGEJ3RRaGABIP59BXU_Tt3wR842-KmswW3NBtoW2bUqtZqbWKm5UiMplHObl-jizyRrtl-ET1S9TKg-0zLquruf86qKSgkin8j_z-6j2o8bDwwJnDlAJokNUyekjzg_nuoreOvBljOZxgkcwe881RRF-XSTzeJPgASSBkZdTnd3iFn6IY4FTrNI1X1XUw73CXm-NW8slVrEA-8ruXQ09d-7H7a6R904w5oowJAYNFG5zaUrpWKbgYcCko6gIUCAuV8dUuqErA1eaJjeFTYUVWNJWbAuk5zQ5CckRKkdxBMcIC2JCGNhEcJUKSglMMTBKXQYioFwxihNU1Xs1_cjKY0zzbTr9e_kK7XbHg_603_Mfz9Cedkz28-oclZPVBi7QDv9MFuvVZerdbyWlpgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Few-Shot+Segmentation+Without+Meta-Learning%3A+A+Good+Transductive+Inference+Is+All+You+Need%3F&rft.au=Boudiaf%2C+Malik&rft.au=Kervadec%2C+Hoel&rft.au=Masud%2C+Ziko+Imtiaz&rft.au=Piantanida%2C+Pablo&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=13974&rft.epage=13983&rft_id=info:doi/10.1109%2FCVPR46437.2021.01376&rft.externalDocID=9577299 |