Improving neural implicit surfaces geometry with patch warping

Neural implicit surfaces have become an important technique for multi-view 3D reconstruction but their accuracy remains limited. In this paper, we argue that this comes from the difficulty to learn and render high frequency textures with neural networks. We thus propose to add to the standard neural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 6250 - 6259
Hlavní autoři: Darmon, Francois, Bascle, Benedicte, Devaux, Jean-Clement, Monasse, Pascal, Aubry, Mathieu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2022
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neural implicit surfaces have become an important technique for multi-view 3D reconstruction but their accuracy remains limited. In this paper, we argue that this comes from the difficulty to learn and render high frequency textures with neural networks. We thus propose to add to the standard neural rendering optimization a direct photo-consistency term across the different views. Intuitively, we optimize the implicit geometry so that it warps views on each other in a consistent way. We demonstrate that two elements are key to the success of such an approach: (i) warping entire patches, using the predicted occupancy and normals of the 3D points along each ray, and measuring their similarity with a robust structural similarity (SSIM); (ii) handling visibility and occlusion in such a way that incorrect warps are not given too much importance while encouraging a reconstruction as complete as possible. We evaluate our approach, dubbed NeuralWarp, on the standard DTU and EPFL benchmarks and show it outperforms state of the art unsupervised implicit surfaces reconstructions by over 20% on both datasets. Our code is available at https://github.com/fdarmon/NeuralWarp
AbstractList Neural implicit surfaces have become an important technique for multi-view 3D reconstruction but their accuracy remains limited. In this paper, we argue that this comes from the difficulty to learn and render high frequency textures with neural networks. We thus propose to add to the standard neural rendering optimization a direct photo-consistency term across the different views. Intuitively, we optimize the implicit geometry so that it warps views on each other in a consistent way. We demonstrate that two elements are key to the success of such an approach: (i) warping entire patches, using the predicted occupancy and normals of the 3D points along each ray, and measuring their similarity with a robust structural similarity (SSIM); (ii) handling visibility and occlusion in such a way that incorrect warps are not given too much importance while encouraging a reconstruction as complete as possible. We evaluate our approach, dubbed NeuralWarp, on the standard DTU and EPFL benchmarks and show it outperforms state of the art unsupervised implicit surfaces reconstructions by over 20% on both datasets. Our code is available at https://github.com/fdarmon/NeuralWarp
Author Devaux, Jean-Clement
Monasse, Pascal
Aubry, Mathieu
Bascle, Benedicte
Darmon, Francois
Author_xml – sequence: 1
  givenname: Francois
  surname: Darmon
  fullname: Darmon, Francois
  organization: Thales LAS France
– sequence: 2
  givenname: Benedicte
  surname: Bascle
  fullname: Bascle, Benedicte
  organization: Thales LAS France
– sequence: 3
  givenname: Jean-Clement
  surname: Devaux
  fullname: Devaux, Jean-Clement
  organization: Thales LAS France
– sequence: 4
  givenname: Pascal
  surname: Monasse
  fullname: Monasse, Pascal
  organization: Univ. Gustave Eiffel, CNRS,LIGM (UMR 8049), École des Ponts,Marne-la-Vallée,France
– sequence: 5
  givenname: Mathieu
  surname: Aubry
  fullname: Aubry, Mathieu
  organization: Univ. Gustave Eiffel, CNRS,LIGM (UMR 8049), École des Ponts,Marne-la-Vallée,France
BookMark eNotjM1KAzEURqMo2NY-gS7yAlPvTSZpshFksFooKKJuS5Imncj8kZla-vaO6AeHszrflFw0beMJuUVYIIK-Kz5f3wSTSi0YMLYAkCjPyBSlFLnUueTnZIIgeSY16isy7_svAOAMUWo1Iffrukvtd2z2tPGHZCoa666KLg60P6RgnO_p3re1H9KJHuNQ0s4MrqRHk7oxuiaXwVS9n_97Rj5Wj-_Fc7Z5eVoXD5usZIoPGQLYPNfCCsdwyYPTSzbCtVLgAjKrAliO3HEmduCE1TthmGd5kFY5j3xGbv5-o_d-26VYm3Ta_uZ83A8RGEt8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00616
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 6259
ExternalDocumentID 9880333
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h283t-100b4495b5c2173fc972c9739880cf12b8f0b313c325d0c5b9d5a2e24f6b8ce13
IEDL.DBID RIE
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754206051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h283t-100b4495b5c2173fc972c9739880cf12b8f0b313c325d0c5b9d5a2e24f6b8ce13
OpenAccessLink https://hal.science/hal-04315790
PageCount 10
ParticipantIDs ieee_primary_9880333
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.595546
Snippet Neural implicit surfaces have become an important technique for multi-view 3D reconstruction but their accuracy remains limited. In this paper, we argue that...
SourceID ieee
SourceType Publisher
StartPage 6250
SubjectTerms 3D from multi-view and sensors; Vision + graphics
Geometry
Neural networks
Pattern recognition
Rendering (computer graphics)
Surface reconstruction
Surface texture
Three-dimensional displays
Title Improving neural implicit surfaces geometry with patch warping
URI https://ieeexplore.ieee.org/document/9880333
WOSCitedRecordID wos000867754206051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MhCa-JLYXloqKqaoQoG5V7JxpJWirNAXx77HTKDCwMFiyvNg62-e783t3ANcKVRJmOQYalXEOitsL7XRlkAlpiazKLdmq2IQYj-V0qiYtuGm4MERUgc_o1nerv_x8ZbY-VDZQ7rAhYhvaQqQ7rlYTT0HnyaRK1uy4KFSD4cvk0Scz8QAu7tNypr6o-a8aKtUTMur-b_ID6P9w8dikeWUOoUXLI-jWxiOrr-amB3dNeID5HJXZG1tUYPFFyTbbwnrkFXul1TuVxRfz0Ve2dlp4zj6zwlOm-vA8un8aPgR1cYRg7iyC0qnPUMfOu9GJcV4FWqMEdw39Mo2NuJY21BihQZ7koUm0ypOME49tqqWhCI-hs1wt6QQYGSUV5UqmKOIwS5WOUUhypiPHLI_lKfS8OGbrXf6LWS2Js7-Hz2Hfy3sHp7qATlls6RL2zEe52BRX1aZ9AxKhmIA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxxgMjoUkuD3thqUBFlKpCBXWrYudMK0FbpSmIf4-dRoGBhcGS5cXW2T7fnb_vDuBSoAjdJEVHolDGQTF7IY2udJKYayItUk26KDYR9_t8NBKDGlxVXBgiKsBndG27xV9-OlcrGyprC3PYEHEDNsMg8N01W6uKqKDxZSLBS36c54p252XwZNOZWAiXbxNzRras-a8qKsUjctf43_S70Pph47FB9c7sQY1m-9AozUdWXs5lE26qAAGzWSqTNzYt4OLTnC1XmbbYK_ZK83fKsy9m469sYfTwhH0mmSVNteD57nbY6TpleQRnYmyC3ChQVwbGv5GhMn4FaiVi3zS0y1Ta8yXXrkQPFfph6qpQijRMfPIDHUmuyMMDqM_mMzoERkpwQangEcaBm0RCBhhzMsajj0ka8CNoWnGMF-sMGONSEsd_D1_Adnf42Bv37vsPJ7BjZb8GV51CPc9WdAZb6iOfLrPzYgO_ATMGm8c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Improving+neural+implicit+surfaces+geometry+with+patch+warping&rft.au=Darmon%2C+Francois&rft.au=Bascle%2C+Benedicte&rft.au=Devaux%2C+Jean-Clement&rft.au=Monasse%2C+Pascal&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=6250&rft.epage=6259&rft_id=info:doi/10.1109%2FCVPR52688.2022.00616&rft.externalDocID=9880333