Estimating the Frequency of Data Items in Massive Distributed Streams

We investigate the problem of estimating on the fly the frequency at which items recur in large scale distributed data streams, which has become the norm in cloud-based application. This paper presents CASE, a combination of tools and probabilistic algorithms from the data streaming model. In this m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA) s. 59 - 66
Hlavní autoři: Anceaume, Emmanuelle, Busnel, Yann, Rivetti, Nicolo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISBN:9781467377416, 1467377414
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the problem of estimating on the fly the frequency at which items recur in large scale distributed data streams, which has become the norm in cloud-based application. This paper presents CASE, a combination of tools and probabilistic algorithms from the data streaming model. In this model, functions are estimated on a huge sequence of data items, in an online fashion, and with a very small amount of memory with respect to both the size of the input stream and the values domain from which data items are drawn. We derive upper and lower bounds on the quality of CASE, improving upon the Count-Min sketch algorithm which has, so far, been the best algorithm in terms of space and time performance to estimate the frequency of data items. We prove that CASE guarantees an (e, d)-approximation of the frequency of all the items, provided they are not rare, in a space- efficient way and for any input stream. Experiments on both synthetic and real datasets confirm our analysis.
AbstractList We investigate the problem of estimating on the fly the frequency at which items recur in large scale distributed data streams, which has become the norm in cloud-based application. This paper presents CASE, a combination of tools and probabilistic algorithms from the data streaming model. In this model, functions are estimated on a huge sequence of data items, in an online fashion, and with a very small amount of memory with respect to both the size of the input stream and the values domain from which data items are drawn. We derive upper and lower bounds on the quality of CASE, improving upon the Count-Min sketch algorithm which has, so far, been the best algorithm in terms of space and time performance to estimate the frequency of data items. We prove that CASE guarantees an (e, d)-approximation of the frequency of all the items, provided they are not rare, in a space- efficient way and for any input stream. Experiments on both synthetic and real datasets confirm our analysis.
Author Busnel, Yann
Rivetti, Nicolo
Anceaume, Emmanuelle
Author_xml – sequence: 1
  givenname: Emmanuelle
  surname: Anceaume
  fullname: Anceaume, Emmanuelle
  email: Emmanuelle.Anceaume@irisa.fr
  organization: IRISA, Rennes, France
– sequence: 2
  givenname: Yann
  surname: Busnel
  fullname: Busnel, Yann
  email: Yann.Busnel@ensai.fr
  organization: Crest, Inria, Rennes, France
– sequence: 3
  givenname: Nicolo
  surname: Rivetti
  fullname: Rivetti, Nicolo
  email: Nicolo.Rivetti@univ-nantes.fr
  organization: LINA, Univ. de Nantes, Nantes, France
BookMark eNotjjtPwzAYAC0BElCysbH4DyT4FT_GKk2hUoEBmCs_PlNLJIXYReq_JxJMN93prtH5eBgBoVtKGkqJuX_uumXDCG0bas5QZZSmQiqulKDyElU5J0eYVFJo016hvs8lDbak8QOXPeD1BN9HGP0JHyJe2WLxpsCQcRrxk53dH8CrlMuU3LFAwK9lAjvkG3QR7WeG6p8L9L7u37rHevvysOmW23rPNCl1cEwaylSIWsngoxLceamcDhoChzZarzXzUTDDQjTg5nVDlXHUkdYHxhfo7q-bAGD3Nc3n02mnuCCEaf4LEldLVQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCCA.2015.19
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 66
ExternalDocumentID 7340028
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-h280t-db269127df876dcf743bc67b8d8ed3e5fac882cf4292df9eb8149179b1b05cd23
IEDL.DBID RIE
ISBN 9781467377416
1467377414
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377339600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 26 19:24:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h280t-db269127df876dcf743bc67b8d8ed3e5fac882cf4292df9eb8149179b1b05cd23
OpenAccessLink https://hal.science/hal-01194529
PageCount 8
ParticipantIDs ieee_primary_7340028
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA)
PublicationTitleAbbrev ncca
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764895
Score 1.5815835
Snippet We investigate the problem of estimating on the fly the frequency at which items recur in large scale distributed data streams, which has become the norm in...
SourceID ieee
SourceType Publisher
StartPage 59
SubjectTerms Approximation algorithms
Approximation methods
Computational modeling
Computer aided software engineering
Data models
Data stream model
Estimation
Frequency estimation
randomized approximation algorithm
Title Estimating the Frequency of Data Items in Massive Distributed Streams
URI https://ieeexplore.ieee.org/document/7340028
WOSCitedRecordID wos000377339600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjbpPYieMR9UMsVB1A6lY5vjN0IEVtisS_55y0hYGFTEmm-Jy7e7bf3WPsLkaT-xikSGWqhMohFxa9ER5lZI2X1kZQi03oySSfzcy0xe73tTCIWJPPsBdu67N8WLpN2Crra6nCGuGAHWidNbVau38nyXSmcpPWtVtBe4Uypdq1dNo-Z3viu-lPBoOHQOxKe6HHzi9hlTqvjI__90UnrPtToMen-9RzylpYdthoRO4aAGj5ygnW8fGqoUl_8aXnQ1tZHvbl13xR8ieCzBTm-DC0zQ2KVwg8nE_b93WXvYxHz4NHsVVJEG9JHlUCiiQzcaLBU2AD5wkSFC7TBZkdQWLqrSMU7XzQpQJvsCCD0BrNFHERpQ4Secba5bLEc8ZpKJb8FYHcVBVeWa-BQoCTii5Af8E6wQTzj6YRxnw7-su_X1-xo2Dghld1zdrVaoM37NB9Vov16raevW_Qg5h2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKQYIJUIv4xgMjaZPYTuIR9UNFtFGHInWrHPsMHUhRmyLx7zknbWFgIVOSKT7n7p7td_cIuQ9AJjYwzBNMcI8nJvEUWOlZYL6Slinlm1JsIk7TZDqV4xp52NXCAEBJPoOWuy3P8s1Cr91WWTtm3K0R9si-4Dz0q2qt7d8TRnHEEynK6i2nvoK5km-bOm2eox31XbbTTufRUbtEy3XZ-SWtUmaW_vH_vumENH9K9Oh4l3xOSQ3yBun10GEdBM1fKQI72l9WROkvurC0qwpF3c78is5zOkLQjIGOdl3jXKd5BYa6E2r1vmqSl35v0hl4G50E7y1M_MIzWRjJIIyNxdBmtEVQkOkoztDwYBgIqzTiaG2dMpWxEjI0CK7SZBZkvtAmZGekni9yOCcUh6LQY8Ggo_LMcmVjg0FAM46XAXtBGs4Es4-qFcZsM_rLv1_fkcPBZDScDZ_S5yty5IxdsayuSb1YruGGHOjPYr5a3pYz-Q3zc5u9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Fourth+Symposium+on+Network+Cloud+Computing+and+Applications+%28NCCA%29&rft.atitle=Estimating+the+Frequency+of+Data+Items+in+Massive+Distributed+Streams&rft.au=Anceaume%2C+Emmanuelle&rft.au=Busnel%2C+Yann&rft.au=Rivetti%2C+Nicolo&rft.date=2015-06-01&rft.pub=IEEE&rft.isbn=9781467377416&rft.spage=59&rft.epage=66&rft_id=info:doi/10.1109%2FNCCA.2015.19&rft.externalDocID=7340028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467377416/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467377416/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467377416/sc.gif&client=summon&freeimage=true