CO2 footprint minimization of solar-powered HALE using MDO and eco-material selection

Multidisciplinary Design Optimization (MDO) enables one to reach a better solution than by optimizing each discipline independently. In particular, the optimal structure of a drone varies depending on the selected material. The C O 2 footprint of a solar-powered High Altitude Long Endurance (HALE) d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 13; číslo 1; s. 11994
Hlavní autori: Duriez, Edouard, Guadaño Martín, Víctor Manuel, Morlier, Joseph
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.12.2023
Nature Publishing Group
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Multidisciplinary Design Optimization (MDO) enables one to reach a better solution than by optimizing each discipline independently. In particular, the optimal structure of a drone varies depending on the selected material. The C O 2 footprint of a solar-powered High Altitude Long Endurance (HALE) drone is optimized here, where the structural materials used is one of the design variables. Optimization is performed using a modified version of OpenAeroStruct, a framework based on OpenMDAO. Our EcoHale framework is validated on a classical HALE testcase in the MDO community (FBhale) constructed using high-fidelity codes compared to our low-fidelity approach. The originality of our work is to include two specific disciplines (energy and environment) to adapt to a new problem of C O 2 minimization. The choice of eco-materials is performed in the global MDO loop from a choice of discrete materials . This is achieved through a variable relaxation, enabling the use of continuous optimization algorithms inspired from multimaterial topology optimization. Our results show that, in our specific case of electric drone, the optimal material in terms of C O 2 footprint is also the optimal material in terms of weight. It opens the door to new researches on digital microarchitectured materials that will decrease the C O 2 footprint of the drone.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-39221-3