Learning Dynamics of Low-Precision Clipped SGD with Momentum
In this work, we present and study a low-precision variant of the stochastic gradient descent (SGD) algorithm with adaptive quantization. In particular, fixed-rate probabilistic uniform quantizers with varying quantization steps and mid-values are used to compress the parameter vectors. Gradient cli...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 6075 - 6079 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
14.04.2024
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, we present and study a low-precision variant of the stochastic gradient descent (SGD) algorithm with adaptive quantization. In particular, fixed-rate probabilistic uniform quantizers with varying quantization steps and mid-values are used to compress the parameter vectors. Gradient clipping and momentum are used to guarantee that the quantizer inputs fall within the representable region of the fixed-rate quantizer and to reduce the impact of the stochastic gradient noise, respectively. We show that, despite the low-precision representation, the quantized variant of the clipped SGD algorithm with momentum is able to converge in the mean-square-error sense. Simulation results illustrate the theoretical findings and the effectiveness of the proposed approach. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP48485.2024.10447855 |