FFTEB: Edge bundling of huge graphs by the Fast Fourier Transform
Edge bundling techniques provide a visual simplification of cluttered graph drawings or trail sets. While many bundling techniques exist, only few recent ones can handle large datasets and also allow selective bundling based on edge attributes. We present a new technique that improves on both above...
Gespeichert in:
| Veröffentlicht in: | IEEE Pacific Visualization Symposium S. 190 - 199 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2017
|
| Schlagworte: | |
| ISSN: | 2165-8773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Edge bundling techniques provide a visual simplification of cluttered graph drawings or trail sets. While many bundling techniques exist, only few recent ones can handle large datasets and also allow selective bundling based on edge attributes. We present a new technique that improves on both above points, in terms of increasing both the scalability and computational speed of bundling, while keeping the quality of the results on par with state-of-the-art techniques. For this, we shift the bundling process from the image space to the spectral (frequency) space, thereby increasing computational speed. We address scalability by proposing a data streaming process that allows bundling of extremely large datasets with limited GPU memory. We demonstrate our technique on several real-world datasets and by comparing it with state-of-the-art bundling methods. |
|---|---|
| ISSN: | 2165-8773 |
| DOI: | 10.1109/PACIFICVIS.2017.8031594 |