Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization
Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are r...
Gespeichert in:
| Veröffentlicht in: | 2020 European Control Conference (ECC) S. 1871 - 1878 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
EUCA
01.05.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints. |
|---|---|
| DOI: | 10.23919/ECC51009.2020.9143595 |