Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization

Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 European Control Conference (ECC) s. 1871 - 1878
Hlavní autori: Lew, Thomas, Bonalli, Riccardo, Pavone, Marco
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: EUCA 01.05.2020
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints.
DOI:10.23919/ECC51009.2020.9143595