PCPNet Learning Local Shape Properties from Raw Point Clouds

In this paper, we propose PCPNET, a deep‐learning based approach for estimating local 3D shape properties in point clouds. In contrast to the majority of prior techniques that concentrate on global or mid‐level attributes, e.g., for shape classification or semantic labeling, we suggest a patch‐based...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 37; číslo 2; s. 75 - 85
Hlavní autoři: Guerrero, Paul, Kleiman, Yanir, Ovsjanikov, Maks, Mitra, Niloy J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2018
Wiley
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose PCPNET, a deep‐learning based approach for estimating local 3D shape properties in point clouds. In contrast to the majority of prior techniques that concentrate on global or mid‐level attributes, e.g., for shape classification or semantic labeling, we suggest a patch‐based learning method, in which a series of local patches at multiple scales around each point is encoded in a structured manner. Our approach is especially well‐adapted for estimating local shape properties such as normals (both unoriented and oriented) and curvature from raw point clouds in the presence of strong noise and multi‐scale features. Our main contributions include both a novel multi‐scale variant of the recently proposed PointNet architecture with emphasis on local shape information, and a series of novel applications in which we demonstrate how learning from training data arising from well‐structured triangle meshes, and applying the trained model to noisy point clouds can produce superior results compared to specialized state‐of‐the‐art techniques. Finally, we demonstrate the utility of our approach in the context of shape reconstruction, by showing how it can be used to extract normal orientation information from point clouds.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13343